/elec/audio-switcher

To get this branch, use:
bzr branch http://bzr.ed.am/elec/audio-switcher
3 by Tim Marston
added timer utilities (wiring.c) from arduino library
1
/*
2
  wiring.c - Partial implementation of the Wiring API for the ATmega8.
3
  Part of Arduino - http://www.arduino.cc/
4
5
  Copyright (c) 2005-2006 David A. Mellis
6
7
  This library is free software; you can redistribute it and/or
8
  modify it under the terms of the GNU Lesser General Public
9
  License as published by the Free Software Foundation; either
10
  version 2.1 of the License, or (at your option) any later version.
11
12
  This library is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
  Lesser General Public License for more details.
16
17
  You should have received a copy of the GNU Lesser General
18
  Public License along with this library; if not, write to the
19
  Free Software Foundation, Inc., 59 Temple Place, Suite 330,
20
  Boston, MA  02111-1307  USA
21
22
  $Id$
23
*/
24
25
#include "wiring_private.h"
26
27
28
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
29
// the overflow handler is called every 256 ticks.
30
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
31
32
// the whole number of milliseconds per timer0 overflow
33
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
34
35
// the fractional number of milliseconds per timer0 overflow. we shift right
36
// by three to fit these numbers into a byte. (for the clock speeds we care
37
// about - 8 and 16 MHz - this doesn't lose precision.)
38
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
39
#define FRACT_MAX (1000 >> 3)
40
41
volatile unsigned long timer0_overflow_count = 0;
42
volatile unsigned long timer0_millis = 0;
43
static unsigned char timer0_fract = 0;
44
45
#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
46
SIGNAL(TIM0_OVF_vect)
47
#else
48
SIGNAL(TIMER0_OVF_vect)
49
#endif
50
{
51
	// copy these to local variables so they can be stored in registers
52
	// (volatile variables must be read from memory on every access)
53
	unsigned long m = timer0_millis;
54
	unsigned char f = timer0_fract;
55
56
	m += MILLIS_INC;
57
	f += FRACT_INC;
58
	if (f >= FRACT_MAX) {
59
		f -= FRACT_MAX;
60
		m += 1;
61
	}
62
63
	timer0_fract = f;
64
	timer0_millis = m;
65
	timer0_overflow_count++;
66
}
67
68
unsigned long millis(void)
69
{
70
	unsigned long m;
71
	uint8_t oldSREG = SREG;
72
73
	// disable interrupts while we read timer0_millis or we might get an
74
	// inconsistent value (e.g. in the middle of a write to timer0_millis)
75
	cli();
76
	m = timer0_millis;
77
	SREG = oldSREG;
78
79
	return m;
80
}
81
82
unsigned long micros(void) {
83
	unsigned long m;
84
	uint8_t oldSREG = SREG, t;
85
	
86
	cli();
87
	m = timer0_overflow_count;
88
#if defined(TCNT0)
89
	t = TCNT0;
90
#elif defined(TCNT0L)
91
	t = TCNT0L;
92
#else
93
	#error TIMER 0 not defined
94
#endif
95
96
  
97
#ifdef TIFR0
98
	if ((TIFR0 & _BV(TOV0)) && (t < 255))
99
		m++;
100
#else
101
	if ((TIFR & _BV(TOV0)) && (t < 255))
102
		m++;
103
#endif
104
105
	SREG = oldSREG;
106
	
107
	return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
108
}
109
110
void delay(unsigned long ms)
111
{
112
	uint16_t start = (uint16_t)micros();
113
114
	while (ms > 0) {
115
		if (((uint16_t)micros() - start) >= 1000) {
116
			ms--;
117
			start += 1000;
118
		}
119
	}
120
}
121
122
/* Delay for the given number of microseconds.  Assumes a 8 or 16 MHz clock. */
123
void delayMicroseconds(unsigned int us)
124
{
125
	// calling avrlib's delay_us() function with low values (e.g. 1 or
126
	// 2 microseconds) gives delays longer than desired.
127
	//delay_us(us);
128
129
#if F_CPU >= 16000000L
130
	// for the 16 MHz clock on most Arduino boards
131
132
	// for a one-microsecond delay, simply return.  the overhead
133
	// of the function call yields a delay of approximately 1 1/8 us.
134
	if (--us == 0)
135
		return;
136
137
	// the following loop takes a quarter of a microsecond (4 cycles)
138
	// per iteration, so execute it four times for each microsecond of
139
	// delay requested.
140
	us <<= 2;
141
142
	// account for the time taken in the preceeding commands.
143
	us -= 2;
144
#else
145
	// for the 8 MHz internal clock on the ATmega168
146
147
	// for a one- or two-microsecond delay, simply return.  the overhead of
148
	// the function calls takes more than two microseconds.  can't just
149
	// subtract two, since us is unsigned; we'd overflow.
150
	if (--us == 0)
151
		return;
152
	if (--us == 0)
153
		return;
154
155
	// the following loop takes half of a microsecond (4 cycles)
156
	// per iteration, so execute it twice for each microsecond of
157
	// delay requested.
158
	us <<= 1;
159
    
160
	// partially compensate for the time taken by the preceeding commands.
161
	// we can't subtract any more than this or we'd overflow w/ small delays.
162
	us--;
163
#endif
164
165
	// busy wait
166
	__asm__ __volatile__ (
167
		"1: sbiw %0,1" "\n\t" // 2 cycles
168
		"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
169
	);
170
}
171
172
void init_wiring_c(void)
173
{
174
	// this needs to be called before setup() or some functions won't
175
	// work there
176
	sei();
177
	
178
	// on the ATmega168, timer 0 is also used for fast hardware pwm
179
	// (using phase-correct PWM would mean that timer 0 overflowed half as often
180
	// resulting in different millis() behavior on the ATmega8 and ATmega168)
181
#if defined(TCCR0A) && defined(WGM01)
182
	sbi(TCCR0A, WGM01);
183
	sbi(TCCR0A, WGM00);
184
#endif  
185
186
	// set timer 0 prescale factor to 64
187
#if defined(__AVR_ATmega128__)
188
	// CPU specific: different values for the ATmega128
189
	sbi(TCCR0, CS02);
190
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
191
	// this combination is for the standard atmega8
192
	sbi(TCCR0, CS01);
193
	sbi(TCCR0, CS00);
194
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
195
	// this combination is for the standard 168/328/1280/2560
196
	sbi(TCCR0B, CS01);
197
	sbi(TCCR0B, CS00);
198
#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
199
	// this combination is for the __AVR_ATmega645__ series
200
	sbi(TCCR0A, CS01);
201
	sbi(TCCR0A, CS00);
202
#else
203
	#error Timer 0 prescale factor 64 not set correctly
204
#endif
205
206
	// enable timer 0 overflow interrupt
207
#if defined(TIMSK) && defined(TOIE0)
208
	sbi(TIMSK, TOIE0);
209
#elif defined(TIMSK0) && defined(TOIE0)
210
	sbi(TIMSK0, TOIE0);
211
#else
212
	#error	Timer 0 overflow interrupt not set correctly
213
#endif
214
215
	// timers 1 and 2 are used for phase-correct hardware pwm
216
	// this is better for motors as it ensures an even waveform
217
	// note, however, that fast pwm mode can achieve a frequency of up
218
	// 8 MHz (with a 16 MHz clock) at 50% duty cycle
219
220
#if defined(TCCR1B) && defined(CS11) && defined(CS10)
221
	TCCR1B = 0;
222
223
	// set timer 1 prescale factor to 64
224
	sbi(TCCR1B, CS11);
225
#if F_CPU >= 8000000L
226
	sbi(TCCR1B, CS10);
227
#endif
228
#elif defined(TCCR1) && defined(CS11) && defined(CS10)
229
	sbi(TCCR1, CS11);
230
#if F_CPU >= 8000000L
231
	sbi(TCCR1, CS10);
232
#endif
233
#endif
234
	// put timer 1 in 8-bit phase correct pwm mode
235
#if defined(TCCR1A) && defined(WGM10)
236
	sbi(TCCR1A, WGM10);
237
#elif defined(TCCR1)
238
	#warning this needs to be finished
239
#endif
240
241
	// set timer 2 prescale factor to 64
242
#if defined(TCCR2) && defined(CS22)
243
	sbi(TCCR2, CS22);
244
#elif defined(TCCR2B) && defined(CS22)
245
	sbi(TCCR2B, CS22);
246
#else
247
	#warning Timer 2 not finished (may not be present on this CPU)
248
#endif
249
250
	// configure timer 2 for phase correct pwm (8-bit)
251
#if defined(TCCR2) && defined(WGM20)
252
	sbi(TCCR2, WGM20);
253
#elif defined(TCCR2A) && defined(WGM20)
254
	sbi(TCCR2A, WGM20);
255
#else
256
	#warning Timer 2 not finished (may not be present on this CPU)
257
#endif
258
259
#if defined(TCCR3B) && defined(CS31) && defined(WGM30)
260
	sbi(TCCR3B, CS31);		// set timer 3 prescale factor to 64
261
	sbi(TCCR3B, CS30);
262
	sbi(TCCR3A, WGM30);		// put timer 3 in 8-bit phase correct pwm mode
263
#endif
264
	
265
#if defined(TCCR4B) && defined(CS41) && defined(WGM40)
266
	sbi(TCCR4B, CS41);		// set timer 4 prescale factor to 64
267
	sbi(TCCR4B, CS40);
268
	sbi(TCCR4A, WGM40);		// put timer 4 in 8-bit phase correct pwm mode
269
#endif
270
271
#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
272
	sbi(TCCR5B, CS51);		// set timer 5 prescale factor to 64
273
	sbi(TCCR5B, CS50);
274
	sbi(TCCR5A, WGM50);		// put timer 5 in 8-bit phase correct pwm mode
275
#endif
276
277
#if defined(ADCSRA)
278
	// set a2d prescale factor to 128
279
	// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
280
	// XXX: this will not work properly for other clock speeds, and
281
	// this code should use F_CPU to determine the prescale factor.
282
	sbi(ADCSRA, ADPS2);
283
	sbi(ADCSRA, ADPS1);
284
	sbi(ADCSRA, ADPS0);
285
286
	// enable a2d conversions
287
	sbi(ADCSRA, ADEN);
288
#endif
289
290
	// the bootloader connects pins 0 and 1 to the USART; disconnect them
291
	// here so they can be used as normal digital i/o; they will be
292
	// reconnected in Serial.begin()
293
#if defined(UCSRB)
294
	UCSRB = 0;
295
#elif defined(UCSR0B)
296
	UCSR0B = 0;
297
#endif
298
}