1
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
5
* Copyright (C) 2011 Tim Marston <tim@ed.am> and Dan Marston.
7
* This file is part of propeller-clock (hereafter referred to as "this
8
* program"). See http://ed.am/dev/software/arduino/propeller-clock for more
11
* This program is free software: you can redistribute it and/or modify
12
* it under the terms of the GNU Lesser General Public License as published
13
* by the Free Software Foundation, either version 3 of the License, or
14
* (at your option) any later version.
16
* This program is distributed in the hope that it will be useful,
17
* but WITHOUT ANY WARRANTY; without even the implied warranty of
18
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19
* GNU Lesser General Public License for more details.
21
* You should have received a copy of the GNU Lesser General Public License
22
* along with this program. If not, see <http://www.gnu.org/licenses/>.
25
/******************************************************************************
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
LED on pin 4 is in the centre of the clock face and the LED on pin
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
Implementation details:
48
* for a schematic, see ../project/propeller-clock.sch.
50
* the timing of the drawing of the clock face is recalculated with
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
software skips every other one. This means that the clock may
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
57
the propeller must be in when starting the clock.
61
* pressing the button cycles between variations of the current
64
* pressing and holding the button for a second cycles between display
65
modes (e.g., analogue and digital).
67
* pressing and holding the button for 5 seconds enters "time set"
68
mode. In this mode, the following applies:
69
- the field that is being set flashes
70
- pressing the button increments the field currently being set
71
- pressing and holding the button for a second cycles through the
72
fields that can be set
73
- pressing and holding the button for 5 seconds sets the time and
76
******************************************************************************/
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
86
//_____________________________________________________________________________
89
// when non-zero, the time (in microseconds) of a new fan pulse that
90
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
94
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
97
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
100
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
117
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
124
switch( _minor_mode ) {
125
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
129
// perform button events
130
void do_button_events()
132
// loop through pending events
133
while( int event = _button.get_event() )
139
switch( _major_mode ) {
141
switch( _minor_mode ) {
142
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
143
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
151
switch( _major_mode ) {
153
if( ++_minor_mode >= 3 )
155
switch( _minor_mode ) {
156
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
163
// looooong press (change major mode)
164
if( ++_major_mode > 0 )
166
switch( _major_mode ) {
167
case MAIN_MODE_IDX: _minor_mode = 0; break;
169
activate_minor_mode();
176
// draw a display segment
177
void draw_next_segment( bool reset )
179
// keep track of segment
181
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
182
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
184
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
185
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
189
switch( _major_mode ) {
191
switch( _minor_mode ) {
192
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
193
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
194
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
200
if( ++segment >= NUM_SEGMENTS ) segment = 0;
202
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
207
// calculate time constants when a new pulse has occurred
208
void calculate_segment_times()
210
// check for overflows, and only recalculate times if there isn't
211
// one (if there is, we'll just go with the last pulse's times)
212
if( _new_pulse_at > _last_pulse_at )
214
// new segment stepping times
215
unsigned long delta = _new_pulse_at - _last_pulse_at;
216
_segment_step = delta / NUM_SEGMENTS;
217
_segment_step_sub = 0;
218
_segment_step_sub_step = delta % NUM_SEGMENTS;
221
// now we have dealt with this pulse, save the pulse time and
222
// clear new_pulse_at, ready for the next pulse
223
_last_pulse_at = _new_pulse_at;
228
// wait until it is time to draw the next segment or a new pulse has
230
void wait_till_end_of_segment( bool reset )
232
static unsigned long end_time = 0;
236
end_time = _last_pulse_at;
238
// work out the time that this segment should be displayed until
239
end_time += _segment_step;
240
_segment_step_sub += _segment_step_sub_step;
241
if( _segment_step_sub >= NUM_SEGMENTS ) {
242
_segment_step_sub -= NUM_SEGMENTS;
247
while( micros() < end_time && !_new_pulse_at );
251
// ISR to handle the pulses from the fan's tachiometer
252
void fan_pulse_handler()
254
// the fan actually sends two pulses per revolution. These pulses
255
// may not be exactly evenly distributed around the rotation, so
256
// we can't recalculate times on every pulse. Instead, we ignore
257
// every other pulse so timings are based on a complete rotation.
258
static bool ignore = true;
262
// set a new pulse time
263
_new_pulse_at = micros();
271
// set up an interrupt handler on pin 2 to nitice fan pulses
272
attachInterrupt( 0, fan_pulse_handler, RISING );
273
digitalWrite( 2, HIGH );
275
// set up output pins (4 to 13) for the led array
276
for( int a = 4; a < 14; a++ )
277
pinMode( a, OUTPUT );
279
// set up mode-switch button on pin 3
281
digitalWrite( 3, HIGH );
282
static int event_times[] = { 5, 500, 4000, 0 };
283
_button.set_event_times( event_times );
285
// activate the minor mode
286
switch( _major_mode ) {
287
case MAIN_MODE_IDX: activate_minor_mode(); break;
295
// if there has been a new pulse, we'll be resetting the display
296
bool reset = _new_pulse_at? true : false;
301
// only do this stuff at the start of a display cycle, to ensure
302
// that no state changes mid-display
305
// calculate segment times
306
calculate_segment_times();
308
// keep track of time
309
Time &time = Time::get_instance();
312
// perform button events
317
draw_next_segment( reset );
319
// wait till it's time to draw the next segment
320
wait_till_end_of_segment( reset );