22
21
* along with this program. If not, see <http://www.gnu.org/licenses/>.
25
/******************************************************************************
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
LED on pin 4 is in the centre of the clock face and the LED on pin
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
Implementation details:
48
* for a schematic, see ../project/propeller-clock.sch.
50
* the timing of the drawing of the clock face is recalculated with
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
software skips every other one. This means that the clock may
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
57
the propeller must be in when starting the clock.
61
* pressing the button cycles between variations of the current
64
* pressing and holding the button for a second cycles between display
65
modes (e.g., analogue and digital).
67
* pressing and holding the button for 5 seconds enters "time set"
68
mode. In this mode, the following applies:
69
- the field that is being set flashes
70
- pressing the button increments the field currently being set
71
- pressing and holding the button for a second cycles through the
72
fields that can be set
73
- pressing and holding the button for 5 seconds sets the time and
76
******************************************************************************/
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
86
24
//_____________________________________________________________________________
89
28
// when non-zero, the time (in microseconds) of a new fan pulse that
90
29
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
31
static unsigned long new_pulse_at = 0;
94
33
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
34
static unsigned long last_pulse_at = 0;
97
36
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
37
static unsigned long segment_step = 0;
100
39
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
40
static unsigned long segment_step_sub_step = 0;
41
static unsigned long segment_step_sub = 0;
117
47
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
124
switch( _minor_mode ) {
125
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
126
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
130
// perform button events
131
void do_button_events()
133
// loop through pending events
134
while( int event = _button.get_event() )
51
// ISR to handle the pulses from the fan's tachiometer
52
void fanPulseHandler()
54
// the fan actually sends two pulses per revolution. These pulses
55
// may not be exactly evenly distributed around the rotation, so
56
// we can't recalculate times on every pulse. Instead, we ignore
57
// every other pulse so timings are based on a complete rotation.
58
static bool ignore = true;
140
switch( _major_mode ) {
142
switch( _minor_mode ) {
143
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
144
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
152
switch( _major_mode ) {
154
if( ++_minor_mode >= 3 )
156
switch( _minor_mode ) {
157
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
164
// looooong press (change major mode)
165
if( ++_major_mode > 0 )
167
switch( _major_mode ) {
168
case MAIN_MODE_IDX: _minor_mode = 0; break;
170
activate_minor_mode();
62
// set a new pulse time
63
new_pulse_at = micros();
177
// draw a display segment
178
void draw_next_segment( bool reset )
68
// draw a particular segment
69
void drawNextSegment( bool reset )
180
// keep track of segment
182
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
183
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
185
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
186
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
191
switch( _major_mode ) {
193
switch( _minor_mode ) {
194
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
195
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
202
switch( _major_mode ) {
204
switch( _minor_mode ) {
205
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
206
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
207
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
213
if( ++segment >= NUM_SEGMENTS ) segment = 0;
215
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
71
static unsigned int segment = 0;
72
if( reset ) segment = 0;
75
for( int a = 0; a < 10; a++ )
76
digitalWrite( a + 4, ( ( segment >> a ) & 1 )? HIGH : LOW );
220
80
// calculate time constants when a new pulse has occurred
221
void calculate_segment_times()
81
void calculateSegmentTimes()
223
83
// check for overflows, and only recalculate times if there isn't
224
84
// one (if there is, we'll just go with the last pulse's times)
225
if( _new_pulse_at > _last_pulse_at )
85
if( new_pulse_at > last_pulse_at )
227
87
// new segment stepping times
228
unsigned long delta = _new_pulse_at - _last_pulse_at;
229
_segment_step = delta / NUM_SEGMENTS;
230
_segment_step_sub = 0;
231
_segment_step_sub_step = delta % NUM_SEGMENTS;
88
unsigned long delta = new_pulse_at - last_pulse_at;
89
segment_step = delta / NUM_SEGMENTS;
91
segment_step_sub_step = delta % NUM_SEGMENTS;
234
94
// now we have dealt with this pulse, save the pulse time and
235
95
// clear new_pulse_at, ready for the next pulse
236
_last_pulse_at = _new_pulse_at;
96
last_pulse_at = new_pulse_at;
241
101
// wait until it is time to draw the next segment or a new pulse has
243
void wait_till_end_of_segment( bool reset )
103
void waitTillNextSegment( bool reset )
245
105
static unsigned long end_time = 0;
249
end_time = _last_pulse_at;
109
end_time = last_pulse_at;
251
111
// work out the time that this segment should be displayed until
252
end_time += _segment_step;
253
_segment_step_sub += _segment_step_sub_step;
254
if( _segment_step_sub >= NUM_SEGMENTS ) {
255
_segment_step_sub -= NUM_SEGMENTS;
112
end_time += segment_step;
113
semgment_step_sub += semgment_step_sub_step;
114
if( semgment_step_sub >= NUM_SEGMENTS ) {
115
semgment_step_sub -= NUM_SEGMENTS;
260
while( micros() < end_time && !_new_pulse_at );
264
// ISR to handle the pulses from the fan's tachiometer
265
void fan_pulse_handler()
267
// the fan actually sends two pulses per revolution. These pulses
268
// may not be exactly evenly distributed around the rotation, so
269
// we can't recalculate times on every pulse. Instead, we ignore
270
// every other pulse so timings are based on a complete rotation.
271
static bool ignore = true;
275
// set a new pulse time
276
_new_pulse_at = micros();
120
while( micros() < end_time && !new_pulse_at );