/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to propeller-clock/propeller-clock.pde

  • Committer: edam
  • Date: 2011-11-17 13:05:46 UTC
  • Revision ID: edam@waxworlds.org-20111117130546-by4v2vm98emidlrk
updated propeller-clock code, added GPL text and renamed fan-test

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
2
1
/*
3
 
 * propeller-clock.ino
 
2
 * propeller-clock.pde
4
3
 *
5
 
 * Copyright (C) 2011 Tim Marston <tim@ed.am> and Dan Marston.
 
4
 * Copyright (C) 2011 Tim Marston <edam@waxworlds.org>
6
5
 *
7
6
 * This file is part of propeller-clock (hereafter referred to as "this
8
 
 * program"). See http://ed.am/dev/software/arduino/propeller-clock for more
 
7
 * program"). See http://ed.am/software/arduino/propeller-clock for more
9
8
 * information.
10
9
 *
11
10
 * This program is free software: you can redistribute it and/or modify
22
21
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23
22
 */
24
23
 
25
 
/******************************************************************************
26
 
 
27
 
Set up:
28
 
 
29
 
 * a PC fan is wired up to a 12V power supply
30
 
 
31
 
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
32
 
   Arduino.
33
 
 
34
 
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
35
 
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
 
   13 is at the outside.
37
 
 
38
 
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
 
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on and off in unison in the centre of the clock.
41
 
 
42
 
 * a button should be attached to pin 3 that grounds it when pressed.
43
 
 
44
 
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
45
 
 
46
 
Implementation details:
47
 
 
48
 
 * for a schematic, see ../project/propeller-clock.sch.
49
 
 
50
 
 * the timing of the drawing of the clock face is recalculated with
51
 
   every rotation of the propeller.
52
 
    
53
 
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
54
 
   software skips every other one. This means that the clock may
55
 
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to discover the position that
57
 
   the propeller must be in when starting the clock.
58
 
    
59
 
Usage instructions:
60
 
 
61
 
 * pressing the button cycles between variations of the current
62
 
   display mode.
63
 
  
64
 
 * pressing and holding the button for a second cycles between display
65
 
   modes (e.g., analogue and digital).
66
 
 
67
 
 * pressing and holding the button for 5 seconds enters "time set"
68
 
   mode. In this mode, the following applies:
69
 
    - the field that is being set flashes
70
 
    - pressing the button increments the field currently being set
71
 
    - pressing and holding the button for a second cycles through the
72
 
      fields that can be set
73
 
    - pressing and holding the button for 5 seconds sets the time and
74
 
      exits "time set" mode
75
 
 
76
 
******************************************************************************/
77
 
 
78
 
#include "config.h"
79
 
#include "button.h"
80
 
#include "time.h"
81
 
#include "Arduino.h"
82
 
#include "analogue_clock.h"
83
 
#include "digital_clock.h"
84
 
#include "test_pattern.h"
85
 
#include "settings_mode.h"
86
 
#include "text.h"
87
 
#include "text_renderer.h"
88
 
#include "common.h"
89
 
 
90
24
//_____________________________________________________________________________
91
25
//                                                                         data
92
26
 
 
27
 
93
28
// when non-zero, the time (in microseconds) of a new fan pulse that
94
29
// has just occurred, which means that segment drawing needs to be
95
30
// restarted
96
 
static unsigned long _new_pulse_at = 0;
 
31
static unsigned long new_pulse_at = 0;
97
32
 
98
33
// the time (in microseconds) when the last fan pulse occurred
99
 
static unsigned long _last_pulse_at = 0;
 
34
static unsigned long last_pulse_at = 0;
100
35
 
101
36
// duration (in microseconds) that a segment should be displayed
102
 
static unsigned long _segment_step = 0;
 
37
static unsigned long segment_step = 0;
103
38
 
104
39
// remainder after divisor and a tally of the remainders for each segment
105
 
static unsigned long _segment_step_sub_step = 0;
106
 
static unsigned long _segment_step_sub = 0;
107
 
 
108
 
// the button
109
 
static Button _button( 3 );
110
 
 
111
 
// modes
112
 
static int _major_mode = 0;
113
 
static int _minor_mode = 0;
114
 
 
115
 
#define MAIN_MODE_IDX 1
116
 
#define SETTINGS_MODE_IDX 0
117
 
 
118
 
#define ANALOGUE_CLOCK_IDX 0
119
 
#define DIGITAL_CLOCK_IDX 1
120
 
#define TEST_PATTERN_IDX 2
 
40
static unsigned long segment_step_sub_step = 0;
 
41
static unsigned long segment_step_sub = 0;
 
42
 
 
43
// display mode
 
44
static
 
45
 
121
46
 
122
47
//_____________________________________________________________________________
123
48
//                                                                         code
124
49
 
125
50
 
126
 
// activate the current minor mode
127
 
void activate_minor_mode()
128
 
{
129
 
        // reset text
130
 
        Text::reset();
131
 
        leds_off();
132
 
 
133
 
        // give the mode a chance to init
134
 
        switch( _minor_mode ) {
135
 
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
136
 
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
137
 
        }
138
 
}
139
 
 
140
 
 
141
 
// activate major mode
142
 
void activate_major_mode()
143
 
{
144
 
        // reset text
145
 
        Text::reset();
146
 
        leds_off();
147
 
 
148
 
        // give the mode a chance to init
149
 
        switch( _major_mode ) {
150
 
        case MAIN_MODE_IDX: activate_minor_mode(); break;
151
 
        case SETTINGS_MODE_IDX: settings_mode_activate(); break;
152
 
        }
153
 
}
154
 
 
155
 
 
156
 
// perform button events
157
 
void do_button_events()
158
 
{
159
 
        // loop through pending events
160
 
        while( int event = _button.get_event() )
 
51
// ISR to handle the pulses from the fan's tachiometer
 
52
void fanPulseHandler()
 
53
{
 
54
        // the fan actually sends two pulses per revolution. These pulses
 
55
        // may not be exactly evenly distributed around the rotation, so
 
56
        // we can't recalculate times on every pulse. Instead, we ignore
 
57
        // every other pulse so timings are based on a complete rotation.
 
58
        static bool ignore = true;
 
59
        ignore = !ignore;
 
60
        if( !ignore )
161
61
        {
162
 
                switch( event )
163
 
                {
164
 
                case 1:
165
 
                        // short press
166
 
                        switch( _major_mode ) {
167
 
                        case MAIN_MODE_IDX:
168
 
                                switch( _minor_mode ) {
169
 
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
170
 
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
171
 
                                }
172
 
                                break;
173
 
                        case SETTINGS_MODE_IDX: settings_mode_press(); break;
174
 
                        }
175
 
                        break;
176
 
 
177
 
                case 2:
178
 
                        // long press
179
 
                        switch( _major_mode ) {
180
 
                        case MAIN_MODE_IDX:
181
 
                                if( ++_minor_mode >= 3 )
182
 
                                        _minor_mode = 0;
183
 
                                activate_minor_mode();
184
 
                                break;
185
 
                        case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
186
 
                        }
187
 
                        break;
188
 
 
189
 
                case 3:
190
 
                        // looooong press (change major mode)
191
 
                        if( ++_major_mode > 1 )
192
 
                                _major_mode = 0;
193
 
                        activate_major_mode();
194
 
                        break;
195
 
                }
 
62
                // set a new pulse time
 
63
                new_pulse_at = micros();
196
64
        }
197
65
}
198
66
 
199
67
 
200
 
// draw a display segment
201
 
void draw_next_segment( bool reset )
 
68
// draw a particular segment
 
69
void drawNextSegment( bool reset )
202
70
{
203
 
        // keep track of segment
204
 
#if CLOCK_FORWARD
205
 
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
206
 
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
207
 
#else
208
 
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
209
 
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
210
 
#endif
211
 
 
212
 
        // reset the text renderer
213
 
        TextRenderer::reset_buffer();
214
 
 
215
 
        // frame reset
216
 
        if( reset ) {
217
 
                switch( _major_mode ) {
218
 
                case MAIN_MODE_IDX:
219
 
                        switch( _minor_mode ) {
220
 
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
221
 
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
222
 
                        }
223
 
                        break;
224
 
                case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
225
 
                }
226
 
 
227
 
                // tell the text services we're starting a new frame
228
 
                Text::draw_reset();
229
 
        }
230
 
 
231
 
        // draw
232
 
        switch( _major_mode ) {
233
 
        case MAIN_MODE_IDX:
234
 
                switch( _minor_mode ) {
235
 
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
236
 
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
237
 
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
238
 
                }
239
 
                break;
240
 
        case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
241
 
        }
242
 
 
243
 
        // draw any text that was rendered
244
 
        TextRenderer::output_buffer();
245
 
 
246
 
#if CLOCK_FORWARD
247
 
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
248
 
#else
249
 
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
250
 
#endif
 
71
        static unsigned int segment = 0;
 
72
        if( reset ) segment = 0;
 
73
        segment++;
 
74
 
 
75
        for( int a = 0; a < 10; a++ )
 
76
                digitalWrite( a + 4, ( ( segment >> a ) & 1 )? HIGH : LOW );
251
77
}
252
78
 
253
79
 
254
80
// calculate time constants when a new pulse has occurred
255
 
void calculate_segment_times()
 
81
void calculateSegmentTimes()
256
82
{
257
83
        // check for overflows, and only recalculate times if there isn't
258
84
        // one (if there is, we'll just go with the last pulse's times)
259
 
        if( _new_pulse_at > _last_pulse_at )
 
85
        if( new_pulse_at > last_pulse_at )
260
86
        {
261
87
                // new segment stepping times
262
 
                unsigned long delta = _new_pulse_at - _last_pulse_at;
263
 
                _segment_step = delta / NUM_SEGMENTS;
264
 
                _segment_step_sub = 0;
265
 
                _segment_step_sub_step = delta % NUM_SEGMENTS;
 
88
                unsigned long delta = new_pulse_at - last_pulse_at;
 
89
                segment_step = delta / NUM_SEGMENTS;
 
90
                segment_step_sub = 0;
 
91
                segment_step_sub_step = delta % NUM_SEGMENTS;
266
92
        }
267
93
 
268
94
        // now we have dealt with this pulse, save the pulse time and
269
95
        // clear new_pulse_at, ready for the next pulse
270
 
        _last_pulse_at = _new_pulse_at;
271
 
        _new_pulse_at = 0;
 
96
        last_pulse_at = new_pulse_at;
 
97
        new_pulse_at = 0;
272
98
}
273
99
 
274
100
 
275
101
// wait until it is time to draw the next segment or a new pulse has
276
102
// occurred
277
 
void wait_till_end_of_segment( bool reset )
 
103
void waitTillNextSegment( bool reset )
278
104
{
279
105
        static unsigned long end_time = 0;
280
106
 
281
107
        // handle reset
282
108
        if( reset )
283
 
                end_time = _last_pulse_at;
 
109
                end_time = last_pulse_at;
284
110
 
285
111
        // work out the time that this segment should be displayed until
286
 
        end_time += _segment_step;
287
 
        _segment_step_sub += _segment_step_sub_step;
288
 
        if( _segment_step_sub >= NUM_SEGMENTS ) {
289
 
                _segment_step_sub -= NUM_SEGMENTS;
 
112
        end_time += segment_step;
 
113
        semgment_step_sub += semgment_step_sub_step;
 
114
        if( semgment_step_sub >= NUM_SEGMENTS ) {
 
115
                semgment_step_sub -= NUM_SEGMENTS;
290
116
                end_time++;
291
117
        }
292
118
 
293
119
        // wait
294
 
        while( micros() < end_time && !_new_pulse_at );
295
 
}
296
 
 
297
 
 
298
 
// ISR to handle the pulses from the fan's tachiometer
299
 
void fan_pulse_handler()
300
 
{
301
 
        // the fan actually sends two pulses per revolution. These pulses
302
 
        // may not be exactly evenly distributed around the rotation, so
303
 
        // we can't recalculate times on every pulse. Instead, we ignore
304
 
        // every other pulse so timings are based on a complete rotation.
305
 
        static bool ignore = true;
306
 
        ignore = !ignore;
307
 
        if( !ignore )
308
 
        {
309
 
                // set a new pulse time
310
 
                _new_pulse_at = micros();
311
 
        }
 
120
        while( micros() < end_time && !new_pulse_at );
312
121
}
313
122
 
314
123
 
316
125
void setup()
317
126
{
318
127
        // set up an interrupt handler on pin 2 to nitice fan pulses
319
 
        attachInterrupt( 0, fan_pulse_handler, RISING );
 
128
        attachInterrupt( 0, fanPulseHandler, RISING );
320
129
        digitalWrite( 2, HIGH );
321
130
  
322
131
        // set up output pins (4 to 13) for the led array
323
132
        for( int a = 4; a < 14; a++ )
324
133
                pinMode( a, OUTPUT );
325
134
 
326
 
        // set up mode-switch button on pin 3
327
 
        pinMode( 3, INPUT );
328
 
        digitalWrite( 3, HIGH );
329
 
        static int event_times[] = { 5, 500, 4000, 0 };
330
 
        _button.set_event_times( event_times );
331
 
 
332
 
        // initialise RTC
333
 
        Time::init();
334
 
 
335
 
        // activate the minor mode
336
 
        activate_major_mode();
 
135
        // serial comms
 
136
        Serial.begin( 9600 );
337
137
}
338
138
 
339
139
 
341
141
void loop()
342
142
{
343
143
        // if there has been a new pulse, we'll be resetting the display
344
 
        bool reset = _new_pulse_at? true : false;
345
 
 
346
 
        // update button
347
 
        _button.update();
348
 
 
349
 
        // only do this stuff at the start of a display cycle, to ensure
350
 
        // that no state changes mid-display
351
 
        if( reset )
352
 
        {
353
 
                // calculate segment times
354
 
                calculate_segment_times();
355
 
 
356
 
                // keep track of time
357
 
                Time::update();
358
 
 
359
 
                // perform button events
360
 
                do_button_events();
361
 
        }
 
144
        bool reset = new_pulse_at? true : false;
362
145
 
363
146
        // draw this segment
364
 
        draw_next_segment( reset );
 
147
        drawNextSegment( reset );
 
148
 
 
149
        // do we need to recalculate segment times?
 
150
        if( reset )
 
151
                calculateSegmentTimes();
365
152
 
366
153
        // wait till it's time to draw the next segment
367
 
        wait_till_end_of_segment( reset );
 
154
        waitTillNextSegment( reset );
368
155
}