/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to propeller-clock/propeller-clock.pde

  • Committer: edam
  • Date: 2011-11-17 13:06:43 UTC
  • Revision ID: edam@waxworlds.org-20111117130643-0azy70bj8ueoq8cn
moved GPL to top-level dir

Show diffs side-by-side

added added

removed removed

1
 
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
2
1
/*
3
 
 * propeller-clock.ino
 
2
 * propeller-clock.pde
4
3
 *
5
 
 * Copyright (C) 2011 Tim Marston <tim@ed.am> and Dan Marston.
 
4
 * Copyright (C) 2011 Tim Marston <edam@waxworlds.org>
6
5
 *
7
6
 * This file is part of propeller-clock (hereafter referred to as "this
8
 
 * program"). See http://ed.am/dev/software/arduino/propeller-clock for more
 
7
 * program"). See http://ed.am/software/arduino/propeller-clock for more
9
8
 * information.
10
9
 *
11
10
 * This program is free software: you can redistribute it and/or modify
22
21
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23
22
 */
24
23
 
25
 
/******************************************************************************
26
 
 
27
 
Set up:
28
 
 
29
 
 * a PC fan is wired up to a 12V power supply
30
 
 
31
 
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
32
 
   Arduino.
33
 
 
34
 
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
35
 
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
 
   13 is at the outside.
37
 
 
38
 
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
 
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on and off in unison in the centre of the clock.
41
 
 
42
 
 * a button should be attached to pin 3 that grounds it when pressed.
43
 
 
44
 
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
45
 
 
46
 
Implementation details:
47
 
 
48
 
 * for a schematic, see ../project/propeller-clock.sch.
49
 
 
50
 
 * the timing of the drawing of the clock face is recalculated with
51
 
   every rotation of the propeller.
52
 
    
53
 
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
54
 
   software skips every other one. This means that the clock may
55
 
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to discover the position that
57
 
   the propeller must be in when starting the clock.
58
 
    
59
 
Usage instructions:
60
 
 
61
 
 * pressing the button cycles between variations of the current
62
 
   display mode.
63
 
  
64
 
 * pressing and holding the button for a second cycles between display
65
 
   modes (e.g., analogue and digital).
66
 
 
67
 
 * pressing and holding the button for 5 seconds enters "time set"
68
 
   mode. In this mode, the following applies:
69
 
    - the field that is being set flashes
70
 
    - pressing the button increments the field currently being set
71
 
    - pressing and holding the button for a second cycles through the
72
 
      fields that can be set
73
 
    - pressing and holding the button for 5 seconds sets the time and
74
 
      exits "time set" mode
75
 
 
76
 
******************************************************************************/
77
 
 
78
 
#include "config.h"
79
 
#include "button.h"
80
 
#include "time.h"
81
 
#include "Arduino.h"
82
 
#include "analogue_clock.h"
83
 
#include "digital_clock.h"
84
 
#include "test_pattern.h"
85
 
#include "settings_mode.h"
86
 
#include "text.h"
87
 
#include "text_renderer.h"
88
 
#include "common.h"
89
 
 
90
24
//_____________________________________________________________________________
91
25
//                                                                         data
92
26
 
 
27
 
93
28
// when non-zero, the time (in microseconds) of a new fan pulse that
94
29
// has just occurred, which means that segment drawing needs to be
95
30
// restarted
96
 
static unsigned long _new_pulse_at = 0;
 
31
static unsigned long new_pulse_at = 0;
97
32
 
98
33
// the time (in microseconds) when the last fan pulse occurred
99
 
static unsigned long _last_pulse_at = 0;
 
34
static unsigned long last_pulse_at = 0;
100
35
 
101
36
// duration (in microseconds) that a segment should be displayed
102
 
static unsigned long _segment_step = 0;
 
37
static unsigned long segment_step = 0;
103
38
 
104
39
// remainder after divisor and a tally of the remainders for each segment
105
 
static unsigned long _segment_step_sub_step = 0;
106
 
static unsigned long _segment_step_sub = 0;
107
 
 
108
 
// the button
109
 
static Button _button( 3 );
110
 
 
111
 
// modes
112
 
static int _major_mode = 0;
113
 
static int _minor_mode = 0;
114
 
 
115
 
#define MAIN_MODE_IDX 1
116
 
#define SETTINGS_MODE_IDX 0
117
 
 
118
 
#define ANALOGUE_CLOCK_IDX 0
119
 
#define DIGITAL_CLOCK_IDX 1
120
 
#define TEST_PATTERN_IDX 2
 
40
static unsigned long segment_step_sub_step = 0;
 
41
static unsigned long segment_step_sub = 0;
 
42
 
 
43
// display mode
 
44
static
 
45
 
121
46
 
122
47
//_____________________________________________________________________________
123
48
//                                                                         code
124
49
 
125
50
 
126
 
// activate the current minor mode
127
 
void activate_minor_mode()
128
 
{
129
 
        switch( _minor_mode ) {
130
 
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
131
 
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
132
 
        }
133
 
 
134
 
        // reset text
135
 
        Text::reset();
136
 
        leds_off();
137
 
}
138
 
 
139
 
 
140
 
// activate major mode
141
 
void activate_major_mode()
142
 
{
143
 
        switch( _major_mode ) {
144
 
        case MAIN_MODE_IDX: activate_minor_mode(); break;
145
 
        case SETTINGS_MODE_IDX: settings_mode_activate(); break;
146
 
        }
147
 
 
148
 
        // reset text
149
 
        Text::reset();
150
 
        leds_off();
151
 
}
152
 
 
153
 
 
154
 
// perform button events
155
 
void do_button_events()
156
 
{
157
 
        // loop through pending events
158
 
        while( int event = _button.get_event() )
 
51
// ISR to handle the pulses from the fan's tachiometer
 
52
void fanPulseHandler()
 
53
{
 
54
        // the fan actually sends two pulses per revolution. These pulses
 
55
        // may not be exactly evenly distributed around the rotation, so
 
56
        // we can't recalculate times on every pulse. Instead, we ignore
 
57
        // every other pulse so timings are based on a complete rotation.
 
58
        static bool ignore = true;
 
59
        ignore = !ignore;
 
60
        if( !ignore )
159
61
        {
160
 
                switch( event )
161
 
                {
162
 
                case 1:
163
 
                        // short press
164
 
                        switch( _major_mode ) {
165
 
                        case MAIN_MODE_IDX:
166
 
                                switch( _minor_mode ) {
167
 
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
168
 
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
169
 
                                }
170
 
                                break;
171
 
                        case SETTINGS_MODE_IDX: settings_mode_press(); break;
172
 
                        }
173
 
                        break;
174
 
 
175
 
                case 2:
176
 
                        // long press
177
 
                        switch( _major_mode ) {
178
 
                        case MAIN_MODE_IDX:
179
 
                                if( ++_minor_mode >= 3 )
180
 
                                        _minor_mode = 0;
181
 
                                activate_minor_mode();
182
 
                                break;
183
 
                        case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
184
 
                        }
185
 
                        break;
186
 
 
187
 
                case 3:
188
 
                        // looooong press (change major mode)
189
 
                        if( ++_major_mode > 1 )
190
 
                                _major_mode = 0;
191
 
                        activate_major_mode();
192
 
                        break;
193
 
                }
 
62
                // set a new pulse time
 
63
                new_pulse_at = micros();
194
64
        }
195
65
}
196
66
 
197
67
 
198
 
// draw a display segment
199
 
void draw_next_segment( bool reset )
 
68
// draw a particular segment
 
69
void drawNextSegment( bool reset )
200
70
{
201
 
        // keep track of segment
202
 
#if CLOCK_FORWARD
203
 
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
204
 
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
205
 
#else
206
 
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
207
 
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
208
 
#endif
209
 
 
210
 
        // reset the text renderer
211
 
        TextRenderer::reset_buffer();
212
 
 
213
 
        // frame reset
214
 
        if( reset ) {
215
 
                switch( _major_mode ) {
216
 
                case MAIN_MODE_IDX:
217
 
                        switch( _minor_mode ) {
218
 
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
219
 
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
220
 
                        }
221
 
                        break;
222
 
                case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
223
 
                }
224
 
 
225
 
                // tell the text services we're starting a new frame
226
 
                Text::draw_reset();
227
 
        }
228
 
 
229
 
        // draw
230
 
        switch( _major_mode ) {
231
 
        case MAIN_MODE_IDX:
232
 
                switch( _minor_mode ) {
233
 
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
234
 
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
235
 
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
236
 
                }
237
 
                break;
238
 
        case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
239
 
        }
240
 
 
241
 
        // draw any text that was rendered
242
 
        TextRenderer::output_buffer();
243
 
 
244
 
#if CLOCK_FORWARD
245
 
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
246
 
#else
247
 
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
248
 
#endif
 
71
        static unsigned int segment = 0;
 
72
        if( reset ) segment = 0;
 
73
        segment++;
 
74
 
 
75
        for( int a = 0; a < 10; a++ )
 
76
                digitalWrite( a + 4, ( ( segment >> a ) & 1 )? HIGH : LOW );
249
77
}
250
78
 
251
79
 
252
80
// calculate time constants when a new pulse has occurred
253
 
void calculate_segment_times()
 
81
void calculateSegmentTimes()
254
82
{
255
83
        // check for overflows, and only recalculate times if there isn't
256
84
        // one (if there is, we'll just go with the last pulse's times)
257
 
        if( _new_pulse_at > _last_pulse_at )
 
85
        if( new_pulse_at > last_pulse_at )
258
86
        {
259
87
                // new segment stepping times
260
 
                unsigned long delta = _new_pulse_at - _last_pulse_at;
261
 
                _segment_step = delta / NUM_SEGMENTS;
262
 
                _segment_step_sub = 0;
263
 
                _segment_step_sub_step = delta % NUM_SEGMENTS;
 
88
                unsigned long delta = new_pulse_at - last_pulse_at;
 
89
                segment_step = delta / NUM_SEGMENTS;
 
90
                segment_step_sub = 0;
 
91
                segment_step_sub_step = delta % NUM_SEGMENTS;
264
92
        }
265
93
 
266
94
        // now we have dealt with this pulse, save the pulse time and
267
95
        // clear new_pulse_at, ready for the next pulse
268
 
        _last_pulse_at = _new_pulse_at;
269
 
        _new_pulse_at = 0;
 
96
        last_pulse_at = new_pulse_at;
 
97
        new_pulse_at = 0;
270
98
}
271
99
 
272
100
 
273
101
// wait until it is time to draw the next segment or a new pulse has
274
102
// occurred
275
 
void wait_till_end_of_segment( bool reset )
 
103
void waitTillNextSegment( bool reset )
276
104
{
277
105
        static unsigned long end_time = 0;
278
106
 
279
107
        // handle reset
280
108
        if( reset )
281
 
                end_time = _last_pulse_at;
 
109
                end_time = last_pulse_at;
282
110
 
283
111
        // work out the time that this segment should be displayed until
284
 
        end_time += _segment_step;
285
 
        _segment_step_sub += _segment_step_sub_step;
286
 
        if( _segment_step_sub >= NUM_SEGMENTS ) {
287
 
                _segment_step_sub -= NUM_SEGMENTS;
 
112
        end_time += segment_step;
 
113
        semgment_step_sub += semgment_step_sub_step;
 
114
        if( semgment_step_sub >= NUM_SEGMENTS ) {
 
115
                semgment_step_sub -= NUM_SEGMENTS;
288
116
                end_time++;
289
117
        }
290
118
 
291
119
        // wait
292
 
        while( micros() < end_time && !_new_pulse_at );
293
 
}
294
 
 
295
 
 
296
 
// ISR to handle the pulses from the fan's tachiometer
297
 
void fan_pulse_handler()
298
 
{
299
 
        // the fan actually sends two pulses per revolution. These pulses
300
 
        // may not be exactly evenly distributed around the rotation, so
301
 
        // we can't recalculate times on every pulse. Instead, we ignore
302
 
        // every other pulse so timings are based on a complete rotation.
303
 
        static bool ignore = true;
304
 
        ignore = !ignore;
305
 
        if( !ignore )
306
 
        {
307
 
                // set a new pulse time
308
 
                _new_pulse_at = micros();
309
 
        }
 
120
        while( micros() < end_time && !new_pulse_at );
310
121
}
311
122
 
312
123
 
314
125
void setup()
315
126
{
316
127
        // set up an interrupt handler on pin 2 to nitice fan pulses
317
 
        attachInterrupt( 0, fan_pulse_handler, RISING );
 
128
        attachInterrupt( 0, fanPulseHandler, RISING );
318
129
        digitalWrite( 2, HIGH );
319
130
  
320
131
        // set up output pins (4 to 13) for the led array
321
132
        for( int a = 4; a < 14; a++ )
322
133
                pinMode( a, OUTPUT );
323
134
 
324
 
        // set up mode-switch button on pin 3
325
 
        pinMode( 3, INPUT );
326
 
        digitalWrite( 3, HIGH );
327
 
        static int event_times[] = { 5, 500, 4000, 0 };
328
 
        _button.set_event_times( event_times );
329
 
 
330
 
        // initialise RTC
331
 
        Time::init();
332
 
 
333
 
        // activate the minor mode
334
 
        activate_major_mode();
 
135
        // serial comms
 
136
        Serial.begin( 9600 );
335
137
}
336
138
 
337
139
 
339
141
void loop()
340
142
{
341
143
        // if there has been a new pulse, we'll be resetting the display
342
 
        bool reset = _new_pulse_at? true : false;
343
 
 
344
 
        // update button
345
 
        _button.update();
346
 
 
347
 
        // only do this stuff at the start of a display cycle, to ensure
348
 
        // that no state changes mid-display
349
 
        if( reset )
350
 
        {
351
 
                // calculate segment times
352
 
                calculate_segment_times();
353
 
 
354
 
                // keep track of time
355
 
                Time::update();
356
 
 
357
 
                // perform button events
358
 
                do_button_events();
359
 
        }
 
144
        bool reset = new_pulse_at? true : false;
360
145
 
361
146
        // draw this segment
362
 
        draw_next_segment( reset );
 
147
        drawNextSegment( reset );
 
148
 
 
149
        // do we need to recalculate segment times?
 
150
        if( reset )
 
151
                calculateSegmentTimes();
363
152
 
364
153
        // wait till it's time to draw the next segment
365
 
        wait_till_end_of_segment( reset );
 
154
        waitTillNextSegment( reset );
366
155
}