/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to propeller-clock/propeller-clock.pde

  • Committer: edam
  • Date: 2011-12-02 01:18:26 UTC
  • Revision ID: edam@waxworlds.org-20111202011826-uzjcdp535mlb98sl
moved kicad files in to "project" directory, which *in future projects) can hold scematics and PCB designs

Show diffs side-by-side

added added

removed removed

1
 
/* -*- mode: c++; compile-command: "make"; -*- */
2
1
/*
3
 
 * propeller-clock.ino
 
2
 * propeller-clock.pde
4
3
 *
5
 
 * Copyright (C) 2011 Tim Marston <tim@ed.am> and Dan Marston.
 
4
 * Copyright (C) 2011 Tim Marston <edam@waxworlds.org>
6
5
 *
7
6
 * This file is part of propeller-clock (hereafter referred to as "this
8
 
 * program"). See http://ed.am/dev/software/arduino/propeller-clock for more
 
7
 * program"). See http://ed.am/software/arduino/propeller-clock for more
9
8
 * information.
10
9
 *
11
10
 * This program is free software: you can redistribute it and/or modify
24
23
 
25
24
/******************************************************************************
26
25
 
27
 
Set up:
28
 
 
29
 
 * a PC fan is wired up to a 12V power supply
30
 
 
31
 
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
32
 
   Arduino.
33
 
 
34
 
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
35
 
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
 
   13 is at the outside.
37
 
 
38
 
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
 
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on and off in unison in the centre of the clock.
41
 
 
42
 
 * a button should be attached to pin 3 that grounds it when pressed.
43
 
 
44
 
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
45
 
 
46
 
Implementation details:
47
 
 
48
 
 * for a schematic, see ../project/propeller-clock.sch.
49
 
 
50
 
 * the timing of the drawing of the clock face is recalculated with
51
 
   every rotation of the propeller.
52
 
    
53
 
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
54
 
   software skips every other one. This means that the clock may
55
 
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to discover the position that
57
 
   the propeller must be in when starting the clock.
58
 
    
59
 
Usage instructions:
60
 
 
61
 
 * pressing the button cycles between variations of the current
62
 
   display mode.
63
 
  
64
 
 * pressing and holding the button for a second cycles between display
65
 
   modes (e.g., analogue and digital).
66
 
 
67
 
 * pressing and holding the button for 5 seconds enters "time set"
68
 
   mode. In this mode, the following applies:
69
 
    - the field that is being set flashes
70
 
    - pressing the button increments the field currently being set
71
 
    - pressing and holding the button for a second cycles through the
72
 
      fields that can be set
73
 
    - pressing and holding the button for 5 seconds sets the time and
74
 
      exits "time set" mode
 
26
  For a schematic, see propeller-clock.sch.
 
27
 
 
28
  Set up as follows:
 
29
 
 
30
  - a PC fan is wired up to the 12V supply.
 
31
 
 
32
  - the fan's SENSE (tachiometer) pin is connected to pin 2 on the
 
33
    arduino.
 
34
 
 
35
  - the pins 4 to 13 on the arduino should directly drive an LED (the
 
36
    LED on pin 4 is in the centre of the clock face and the LED on pin
 
37
    13 is at the outside.
 
38
 
 
39
  - if a longer hand (and a larger clock face) is desired, pin 4 can
 
40
    be used to indirectly drive (via a MOSFET) multiple LEDs which
 
41
    turn on and off in unison in the centre of the clock.
 
42
 
 
43
  - a button should be attached to pin 3 that grounds it when pressed.
 
44
 
 
45
  Implementation details:
 
46
 
 
47
  - the timing of the drawing of the clock face is recalculated with
 
48
    every rotation of the propeller (for maximum update speed).
 
49
 
 
50
  - pressing the button cycles between display modes
 
51
 
 
52
  - holding down the button for 2 seconds enters "set time" mode. In
 
53
    this mode, the fan must be held still and the LEDs will indicate
 
54
    what number is being entered for each time digit. Pressing the
 
55
    button increments the current digit. Holding it down moves to the
 
56
    next digit (or leaves "set time" mode when there are no more). In
 
57
    order, the digits (with accepted values) are: hours-tens (0 to 2),
 
58
    hours-ones (0 to 9), minutes-tens (0 to 5), minutes-ones (0 to 9).
75
59
 
76
60
******************************************************************************/
77
61
 
78
 
#include "config.h"
79
 
#include "button.h"
80
 
#include "time.h"
81
 
#include "Arduino.h"
82
 
#include "modes/switcher_major_mode.h"
83
 
#include "modes/settings_major_mode.h"
84
 
#include "modes/analogue_clock_mode.h"
85
 
#include "modes/digital_clock_mode.h"
86
 
#include "modes/info_mode.h"
87
 
#include "modes/test_pattern_mode.h"
88
 
#include "text.h"
89
 
#include "text_renderer.h"
90
 
#include "common.h"
 
62
 
 
63
#include <Bounce.h>
91
64
 
92
65
//_____________________________________________________________________________
93
66
//                                                                         data
94
67
 
 
68
 
95
69
// when non-zero, the time (in microseconds) of a new fan pulse that
96
70
// has just occurred, which means that segment drawing needs to be
97
71
// restarted
98
 
static unsigned long _new_pulse_at = 0;
 
72
static unsigned long new_pulse_at = 0;
99
73
 
100
74
// the time (in microseconds) when the last fan pulse occurred
101
 
static unsigned long _last_pulse_at = 0;
 
75
static unsigned long last_pulse_at = 0;
102
76
 
103
77
// duration (in microseconds) that a segment should be displayed
104
 
static unsigned long _segment_step = 0;
 
78
static unsigned long segment_step = 0;
105
79
 
106
80
// remainder after divisor and a tally of the remainders for each segment
107
 
static unsigned long _segment_step_sub_step = 0;
108
 
static unsigned long _segment_step_sub = 0;
109
 
 
110
 
// the button
111
 
static Button _button( 3 );
112
 
 
113
 
// major modes
114
 
static MajorMode *_modes[ 3 ];
115
 
 
116
 
// current major mode
117
 
static int _mode = 0;
118
 
 
119
 
// interupt handler's "ignore every other" flag
120
 
static bool _pulse_ignore = true;
 
81
static unsigned long segment_step_sub_step = 0;
 
82
static unsigned long segment_step_sub = 0;
 
83
 
 
84
// flag to indicate that the drawing mode should be cycled to the next one
 
85
static bool inc_draw_mode = false;
 
86
 
 
87
// a bounce-managed button
 
88
static Bounce button( 3, 5 );
 
89
 
 
90
// the time
 
91
static int time_hours = 0;
 
92
static int time_minutes = 0;
 
93
static int time_seconds = 0;
 
94
 
 
95
// number of segments in a full display (rotation) is 60 (one per
 
96
// second) times the desired number of sub-divisions of a second
 
97
#define NUM_SECOND_SEGMENTS 5
 
98
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
121
99
 
122
100
//_____________________________________________________________________________
123
101
//                                                                         code
124
102
 
125
 
// perform button events
126
 
void do_button_events()
127
 
{
128
 
        // loop through pending events
129
 
        while( int event = _button.get_event() )
130
 
        {
131
 
                switch( event )
132
 
                {
133
 
                case 1:
134
 
                        // short press
135
 
                        _modes[ _mode ]->press();
136
 
                        break;
137
 
                case 2:
138
 
                        // long press
139
 
                        _modes[ _mode ]->long_press();
140
 
                        break;
141
 
                case 3:
142
 
                        // looooong press (change major mode)
143
 
                        _modes[ _mode ]->deactivate();
144
 
                        if( !_modes[ ++_mode ] ) _mode = 0;
145
 
                        _modes[ _mode ]->activate();
146
 
                        break;
147
 
                case 4:
148
 
                        // switch display upside-down
149
 
                        _pulse_ignore = !_pulse_ignore;
150
 
                        break;
 
103
 
 
104
// check for button presses
 
105
void checkButtons()
 
106
{
 
107
        // update buttons
 
108
        button.update();
 
109
 
 
110
        // notice button presses
 
111
        if( button.risingEdge() )
 
112
                inc_draw_mode = true;
 
113
}
 
114
 
 
115
 
 
116
// keep track of time
 
117
void trackTime()
 
118
{
 
119
        // previous time and any carried-over milliseconds
 
120
        static unsigned long last_time = millis();
 
121
        static unsigned long carry = 0;
 
122
 
 
123
        // how many milliseonds have elapsed since we last checked?
 
124
        unsigned long next_time = millis();
 
125
        unsigned long delta = next_time - last_time + carry;
 
126
 
 
127
        // update the previous time and carried-over milliseconds
 
128
        last_time = next_time;
 
129
        carry = delta % 1000;
 
130
 
 
131
        // add the seconds that have passed to the time
 
132
        time_seconds += delta / 1000;
 
133
        while( time_seconds >= 60 ) {
 
134
                time_seconds -= 60;
 
135
                time_minutes++;
 
136
                if( time_minutes >= 60 ) {
 
137
                        time_minutes -= 60;
 
138
                        time_hours++;
 
139
                        if( time_hours >= 24 )
 
140
                                time_hours -= 24;
151
141
                }
152
142
        }
153
143
}
154
144
 
155
145
 
 
146
// draw a segment for the test display
 
147
void drawNextSegment_test( bool reset )
 
148
{
 
149
        // keep track of segment
 
150
        static unsigned int segment = 0;
 
151
        if( reset ) segment = 0;
 
152
        segment++;
 
153
 
 
154
        // turn on inside and outside LEDs
 
155
        digitalWrite( 4, HIGH );
 
156
        digitalWrite( 13, HIGH );
 
157
 
 
158
        // display segment number in binary across in the inside LEDs,
 
159
        // with the LED on pin 12 showing the least-significant bit
 
160
        for( int a = 0; a < 8; a++ )
 
161
                digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
 
162
}
 
163
 
 
164
 
 
165
// draw a segment for the time display
 
166
void drawNextSegment_time( bool reset )
 
167
{
 
168
        static unsigned int second = 0;
 
169
        static unsigned int segment = 0;
 
170
 
 
171
        // handle display reset
 
172
        if( reset ) {
 
173
                second = 0;
 
174
                segment = 0;
 
175
        }
 
176
 
 
177
        // what needs to be drawn?
 
178
        bool draw_tick = !segment && second % 5 == 0;
 
179
        bool draw_second = !segment && second == time_seconds;
 
180
        bool draw_minute = !segment && second == time_minute;
 
181
        bool draw_hour = !segment && second == time_hour;
 
182
 
 
183
        // set the LEDs
 
184
        digitalWrite( 13, HIGH );
 
185
        digitalWrite( 12, draw_tick || draw_minute );
 
186
        for( int a = 10; a <= 11; a++ )
 
187
                digitalWrite( a, draw_minute || draw_second );
 
188
        for( int a = 4; a <= 9; a++ )
 
189
                digitalWrite( 10, draw_minute | draw_second || draw_hour );
 
190
 
 
191
        // inc position
 
192
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
 
193
                segment = 0;
 
194
                second++;
 
195
        }
 
196
}
 
197
 
 
198
 
156
199
// draw a display segment
157
 
void draw_next_segment( bool reset )
 
200
void drawNextSegment( bool reset )
158
201
{
159
 
        // keep track of segment
160
 
        static int segment = 0;
161
 
#if CLOCK_FORWARD
162
 
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
163
 
#else
164
 
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
165
 
#endif
166
 
 
167
 
        // reset the text renderer's buffer
168
 
        TextRenderer::reset_buffer();
169
 
 
170
 
        if( reset )
171
 
        {
172
 
                _modes[ _mode ]->draw_reset();
173
 
 
174
 
                // tell the text services we're starting a new frame
175
 
                Text::draw_reset();
176
 
        }
177
 
 
178
 
        // draw
179
 
        _modes[ _mode ]->draw( segment );
180
 
 
181
 
        // draw text
182
 
        Text::draw( segment );
183
 
 
184
 
        // draw text rednerer's buffer
185
 
        TextRenderer::output_buffer();
186
 
 
187
 
#if CLOCK_FORWARD
188
 
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
189
 
#else
190
 
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
191
 
#endif
 
202
        static int draw_mode = 0;
 
203
 
 
204
        // handle mode switch requests
 
205
        if( reset && inc_draw_mode ) {
 
206
                inc_draw_mode = false;
 
207
                draw_mode++;
 
208
                if( draw_mode >= 2 )
 
209
                        draw_mode = 0;
 
210
        }
 
211
 
 
212
        // draw the segment
 
213
        switch( draw_mode ) {
 
214
        case 0: drawNextSegment_test( reset ); break;
 
215
        case 1: drawNextSegment_time( reset ); break;
 
216
        }
192
217
}
193
218
 
194
219
 
195
220
// calculate time constants when a new pulse has occurred
196
 
void calculate_segment_times()
 
221
void calculateSegmentTimes()
197
222
{
198
223
        // check for overflows, and only recalculate times if there isn't
199
224
        // one (if there is, we'll just go with the last pulse's times)
200
 
        if( _new_pulse_at > _last_pulse_at )
 
225
        if( new_pulse_at > last_pulse_at )
201
226
        {
202
227
                // new segment stepping times
203
 
                unsigned long delta = _new_pulse_at - _last_pulse_at;
204
 
                _segment_step = delta / NUM_SEGMENTS;
205
 
                _segment_step_sub = 0;
206
 
                _segment_step_sub_step = delta % NUM_SEGMENTS;
 
228
                unsigned long delta = new_pulse_at - last_pulse_at;
 
229
                segment_step = delta / NUM_SEGMENTS;
 
230
                segment_step_sub = 0;
 
231
                segment_step_sub_step = delta % NUM_SEGMENTS;
207
232
        }
208
233
 
209
234
        // now we have dealt with this pulse, save the pulse time and
210
235
        // clear new_pulse_at, ready for the next pulse
211
 
        _last_pulse_at = _new_pulse_at;
212
 
        _new_pulse_at = 0;
 
236
        last_pulse_at = new_pulse_at;
 
237
        new_pulse_at = 0;
213
238
}
214
239
 
215
240
 
216
241
// wait until it is time to draw the next segment or a new pulse has
217
242
// occurred
218
 
void wait_till_end_of_segment( bool reset )
 
243
void waitTillNextSegment( bool reset )
219
244
{
220
245
        static unsigned long end_time = 0;
221
246
 
222
247
        // handle reset
223
248
        if( reset )
224
 
                end_time = _last_pulse_at;
 
249
                end_time = last_pulse_at;
225
250
 
226
251
        // work out the time that this segment should be displayed until
227
 
        end_time += _segment_step;
228
 
        _segment_step_sub += _segment_step_sub_step;
229
 
        if( _segment_step_sub >= NUM_SEGMENTS ) {
230
 
                _segment_step_sub -= NUM_SEGMENTS;
 
252
        end_time += segment_step;
 
253
        segment_step_sub += segment_step_sub_step;
 
254
        if( segment_step_sub >= NUM_SEGMENTS ) {
 
255
                segment_step_sub -= NUM_SEGMENTS;
231
256
                end_time++;
232
257
        }
233
258
 
234
259
        // wait
235
 
        while( micros() < end_time && !_new_pulse_at );
 
260
        while( micros() < end_time && !new_pulse_at );
236
261
}
237
262
 
238
263
 
239
 
// ISR to handle the pulses from the fan's tachometer
240
 
void fan_pulse_handler()
 
264
// ISR to handle the pulses from the fan's tachiometer
 
265
void fanPulseHandler()
241
266
{
242
267
        // the fan actually sends two pulses per revolution. These pulses
243
268
        // may not be exactly evenly distributed around the rotation, so
244
269
        // we can't recalculate times on every pulse. Instead, we ignore
245
270
        // every other pulse so timings are based on a complete rotation.
246
 
        _pulse_ignore = !_pulse_ignore;
247
 
        if( !_pulse_ignore )
 
271
        static bool ignore = true;
 
272
        ignore = !ignore;
 
273
        if( !ignore )
248
274
        {
249
275
                // set a new pulse time
250
 
                _new_pulse_at = micros();
 
276
                new_pulse_at = micros();
251
277
        }
252
278
}
253
279
 
255
281
// main setup
256
282
void setup()
257
283
{
258
 
        // set up an interrupt handler on pin 2 to notice fan pulses
259
 
        attachInterrupt( 0, fan_pulse_handler, RISING );
 
284
        // set up an interrupt handler on pin 2 to nitice fan pulses
 
285
        attachInterrupt( 0, fanPulseHandler, RISING );
260
286
        digitalWrite( 2, HIGH );
261
287
  
262
288
        // set up output pins (4 to 13) for the led array
265
291
 
266
292
        // set up mode-switch button on pin 3
267
293
        pinMode( 3, INPUT );
268
 
        digitalWrite( 3, HIGH );
269
 
        static int event_times[] = { 10, 500, 2000, 4000, 0 };
270
 
        _button.set_event_times( event_times );
271
 
 
272
 
        // initialise RTC
273
 
        Time::load_time();
274
 
 
275
 
        // init text renderer
276
 
        TextRenderer::init();
277
 
 
278
 
        // reset text
279
 
        Text::reset();
280
 
        leds_off();
281
 
 
282
 
        static SwitcherMajorMode switcher;
283
 
        static SettingsMajorMode settings( _button );
284
 
 
285
 
        // add major modes
286
 
        int mode = 0;
287
 
        _modes[ mode++ ] = &switcher;
288
 
        _modes[ mode++ ] = &settings;
289
 
        _modes[ mode ] = 0;
290
 
 
291
 
        // activate the current major mode
292
 
        _modes[ _mode ]->activate();
 
294
 
 
295
        // serial comms
 
296
        Serial.begin( 9600 );
293
297
}
294
298
 
295
299
 
297
301
void loop()
298
302
{
299
303
        // if there has been a new pulse, we'll be resetting the display
300
 
        bool reset = _new_pulse_at? true : false;
301
 
 
302
 
        // update button
303
 
        _button.update();
 
304
        bool reset = new_pulse_at? true : false;
304
305
 
305
306
        // only do this stuff at the start of a display cycle, to ensure
306
307
        // that no state changes mid-display
307
308
        if( reset )
308
309
        {
309
 
                // calculate segment times
310
 
                calculate_segment_times();
 
310
                // check buttons
 
311
                checkButtons();
311
312
 
312
313
                // keep track of time
313
 
                Time::update();
314
 
 
315
 
                // perform button events
316
 
                do_button_events();
 
314
                trackTime();
317
315
        }
318
316
 
319
317
        // draw this segment
320
 
        draw_next_segment( reset );
 
318
        drawNextSegment( reset );
 
319
 
 
320
        // do we need to recalculate segment times?
 
321
        if( reset )
 
322
                calculateSegmentTimes();
321
323
 
322
324
        // wait till it's time to draw the next segment
323
 
        wait_till_end_of_segment( reset );
 
325
        waitTillNextSegment( reset );
324
326
}