29
28
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
30
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
33
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
34
LED on pin 4 is in the centre of the clock face and the LED on pin
36
35
13 is at the outside.
38
37
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
38
used to indirectly drive (via a MOSFET) multiple LEDs which turn on
39
and off in unison in the centre of the clock.
42
41
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
43
Implementation details:
48
* for a schematic, see ../project/propeller-clock.sch.
45
* for a schematic, see project/propeller-clock.sch.
50
47
* the timing of the drawing of the clock face is recalculated with
51
48
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
50
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
51
software skips every other one. This means that the clock may
55
52
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
53
position. You will need to experiment to dicsover the position that
57
54
the propeller must be in when starting the clock.
59
56
Usage instructions:
70
67
- pressing the button increments the field currently being set
71
68
- pressing and holding the button for a second cycles through the
72
69
fields that can be set
73
- pressing and holding the button for 5 seconds sets the time and
70
- press and holding the button for 5 seconds to finish
76
72
******************************************************************************/
82
#include "modes/switcher_major_mode.h"
83
#include "modes/settings_major_mode.h"
84
#include "modes/analogue_clock_mode.h"
85
#include "modes/digital_clock_mode.h"
86
#include "modes/info_mode.h"
87
#include "modes/test_pattern_mode.h"
89
#include "text_renderer.h"
92
77
//_____________________________________________________________________________
95
81
// when non-zero, the time (in microseconds) of a new fan pulse that
96
82
// has just occurred, which means that segment drawing needs to be
98
static unsigned long _new_pulse_at = 0;
84
static unsigned long new_pulse_at = 0;
100
86
// the time (in microseconds) when the last fan pulse occurred
101
static unsigned long _last_pulse_at = 0;
87
static unsigned long last_pulse_at = 0;
103
89
// duration (in microseconds) that a segment should be displayed
104
static unsigned long _segment_step = 0;
90
static unsigned long segment_step = 0;
106
92
// remainder after divisor and a tally of the remainders for each segment
107
static unsigned long _segment_step_sub_step = 0;
108
static unsigned long _segment_step_sub = 0;
111
static Button _button( 3 );
114
static MajorMode *_modes[ 3 ];
116
// current major mode
117
static int _mode = 0;
93
static unsigned long segment_step_sub_step = 0;
94
static unsigned long segment_step_sub = 0;
96
// flag to indicate that the drawing mode should be cycled to the next one
97
static bool inc_draw_mode = false;
99
// a bounce-managed button
100
static Bounce button( 3, 5 );
103
static int time_hours = 0;
104
static int time_minutes = 0;
105
static int time_seconds = 0;
107
// number of segments in a full display (rotation) is 60 (one per
108
// second) times the desired number of sub-divisions of a second
109
#define NUM_SECOND_SEGMENTS 5
110
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
119
112
//_____________________________________________________________________________
122
// perform button events
123
void do_button_events()
125
// loop through pending events
126
while( int event = _button.get_event() )
132
_modes[ _mode ]->press();
136
_modes[ _mode ]->long_press();
139
// looooong press (change major mode)
140
_modes[ _mode ]->deactivate();
141
if( !_modes[ ++_mode ] ) _mode = 0;
142
_modes[ _mode ]->activate();
116
// check for button presses
122
// notice button presses
123
if( button.risingEdge() )
124
inc_draw_mode = true;
128
// keep track of time
131
// previous time and any carried-over milliseconds
132
static unsigned long last_time = millis();
133
static unsigned long carry = 0;
135
// how many milliseonds have elapsed since we last checked?
136
unsigned long next_time = millis();
137
unsigned long delta = next_time - last_time + carry;
139
// update the previous time and carried-over milliseconds
140
last_time = next_time;
141
carry = delta % 1000;
143
// add the seconds that have passed to the time
144
time_seconds += delta / 1000;
145
while( time_seconds >= 60 ) {
148
if( time_minutes >= 60 ) {
151
if( time_hours >= 24 )
158
// draw a segment for the test display
159
void drawNextSegment_test( bool reset )
161
// keep track of segment
162
static unsigned int segment = 0;
163
if( reset ) segment = 0;
166
// turn on inside and outside LEDs
167
digitalWrite( 4, HIGH );
168
digitalWrite( 13, HIGH );
170
// display segment number in binary across in the inside LEDs,
171
// with the LED on pin 12 showing the least-significant bit
172
for( int a = 0; a < 8; a++ )
173
digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
177
// draw a segment for the time display
178
void drawNextSegment_time( bool reset )
180
static unsigned int second = 0;
181
static unsigned int segment = 0;
183
// handle display reset
189
// what needs to be drawn?
190
bool draw_tick = !segment && second % 5 == 0;
191
bool draw_second = !segment && second == time_seconds;
192
bool draw_minute = !segment && second == time_minute;
193
bool draw_hour = !segment && second == time_hour;
196
digitalWrite( 13, HIGH );
197
digitalWrite( 12, draw_tick || draw_minute );
198
for( int a = 10; a <= 11; a++ )
199
digitalWrite( a, draw_minute || draw_second );
200
for( int a = 4; a <= 9; a++ )
201
digitalWrite( 10, draw_minute | draw_second || draw_hour );
204
if( ++segment >= NUM_SECOND_SEGMENTS ) {
149
211
// draw a display segment
150
void draw_next_segment( bool reset )
212
void drawNextSegment( bool reset )
152
// keep track of segment
154
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
155
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
157
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
158
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
161
// reset the text renderer's buffer
162
TextRenderer::reset_buffer();
166
_modes[ _mode ]->draw_reset();
168
// tell the text services we're starting a new frame
173
_modes[ _mode ]->draw( segment );
175
// TODO: remove this hack
178
// draw text rednerer's buffer
179
TextRenderer::output_buffer();
182
if( ++segment >= NUM_SEGMENTS ) segment = 0;
184
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
214
static int draw_mode = 0;
216
// handle mode switch requests
217
if( reset && inc_draw_mode ) {
218
inc_draw_mode = false;
225
switch( draw_mode ) {
226
case 0: drawNextSegment_test( reset ); break;
227
case 1: drawNextSegment_time( reset ); break;
189
232
// calculate time constants when a new pulse has occurred
190
void calculate_segment_times()
233
void calculateSegmentTimes()
192
235
// check for overflows, and only recalculate times if there isn't
193
236
// one (if there is, we'll just go with the last pulse's times)
194
if( _new_pulse_at > _last_pulse_at )
237
if( new_pulse_at > last_pulse_at )
196
239
// new segment stepping times
197
unsigned long delta = _new_pulse_at - _last_pulse_at;
198
_segment_step = delta / NUM_SEGMENTS;
199
_segment_step_sub = 0;
200
_segment_step_sub_step = delta % NUM_SEGMENTS;
240
unsigned long delta = new_pulse_at - last_pulse_at;
241
segment_step = delta / NUM_SEGMENTS;
242
segment_step_sub = 0;
243
segment_step_sub_step = delta % NUM_SEGMENTS;
203
246
// now we have dealt with this pulse, save the pulse time and
204
247
// clear new_pulse_at, ready for the next pulse
205
_last_pulse_at = _new_pulse_at;
248
last_pulse_at = new_pulse_at;
210
253
// wait until it is time to draw the next segment or a new pulse has
212
void wait_till_end_of_segment( bool reset )
255
void waitTillNextSegment( bool reset )
214
257
static unsigned long end_time = 0;
218
end_time = _last_pulse_at;
261
end_time = last_pulse_at;
220
263
// work out the time that this segment should be displayed until
221
end_time += _segment_step;
222
_segment_step_sub += _segment_step_sub_step;
223
if( _segment_step_sub >= NUM_SEGMENTS ) {
224
_segment_step_sub -= NUM_SEGMENTS;
264
end_time += segment_step;
265
segment_step_sub += segment_step_sub_step;
266
if( segment_step_sub >= NUM_SEGMENTS ) {
267
segment_step_sub -= NUM_SEGMENTS;
229
while( micros() < end_time && !_new_pulse_at );
272
while( micros() < end_time && !new_pulse_at );
233
// ISR to handle the pulses from the fan's tachometer
234
void fan_pulse_handler()
276
// ISR to handle the pulses from the fan's tachiometer
277
void fanPulseHandler()
236
279
// the fan actually sends two pulses per revolution. These pulses
237
280
// may not be exactly evenly distributed around the rotation, so