/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.ino

  • Committer: edam
  • Date: 2012-01-01 14:05:28 UTC
  • Revision ID: edam@waxworlds.org-20120101140528-ldqldo67nil1xf1s
added arduino.mk to the project

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
2
1
/*
3
2
 * propeller-clock.ino
4
3
 *
28
27
 
29
28
 * a PC fan is wired up to a 12V power supply
30
29
 
31
 
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
32
 
   Arduino.
 
30
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
 
31
   arduino.
33
32
 
34
 
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
 
33
 * the pins 4 to 13 on the arduino should directly drive an LED (the
35
34
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
35
   13 is at the outside.
37
36
 
38
37
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
 
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on and off in unison in the centre of the clock.
 
38
   used to indirectly drive (via a MOSFET) multiple LEDs which turn on
 
39
   and off in unison in the centre of the clock.
41
40
 
42
41
 * a button should be attached to pin 3 that grounds it when pressed.
43
42
 
44
 
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
45
 
 
46
43
Implementation details:
47
44
 
48
 
 * for a schematic, see ../project/propeller-clock.sch.
 
45
 * for a schematic, see project/propeller-clock.sch.
49
46
 
50
47
 * the timing of the drawing of the clock face is recalculated with
51
48
   every rotation of the propeller.
52
49
    
53
 
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
 
50
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
51
   software skips every other one. This means that the clock may
55
52
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to discover the position that
 
53
   position. You will need to experiment to dicsover the position that
57
54
   the propeller must be in when starting the clock.
58
55
    
59
56
Usage instructions:
70
67
    - pressing the button increments the field currently being set
71
68
    - pressing and holding the button for a second cycles through the
72
69
      fields that can be set
73
 
    - pressing and holding the button for 5 seconds sets the time and
74
 
      exits "time set" mode
 
70
    - press and holding the button for 5 seconds to finish
75
71
 
76
72
******************************************************************************/
77
73
 
78
 
#include "config.h"
79
 
#include "button.h"
80
 
#include "time.h"
81
 
#include "Arduino.h"
82
 
#include "analogue_clock.h"
83
 
#include "digital_clock.h"
84
 
#include "test_pattern.h"
85
 
#include "settings_mode.h"
86
 
#include "text.h"
87
 
#include "text_renderer.h"
88
 
#include "common.h"
 
74
 
 
75
#include <Bounce.h>
89
76
 
90
77
//_____________________________________________________________________________
91
78
//                                                                         data
92
79
 
 
80
 
93
81
// when non-zero, the time (in microseconds) of a new fan pulse that
94
82
// has just occurred, which means that segment drawing needs to be
95
83
// restarted
96
 
static unsigned long _new_pulse_at = 0;
 
84
static unsigned long new_pulse_at = 0;
97
85
 
98
86
// the time (in microseconds) when the last fan pulse occurred
99
 
static unsigned long _last_pulse_at = 0;
 
87
static unsigned long last_pulse_at = 0;
100
88
 
101
89
// duration (in microseconds) that a segment should be displayed
102
 
static unsigned long _segment_step = 0;
 
90
static unsigned long segment_step = 0;
103
91
 
104
92
// remainder after divisor and a tally of the remainders for each segment
105
 
static unsigned long _segment_step_sub_step = 0;
106
 
static unsigned long _segment_step_sub = 0;
107
 
 
108
 
// the button
109
 
static Button _button( 3 );
110
 
 
111
 
// modes
112
 
static int _major_mode = 0;
113
 
static int _minor_mode = 0;
114
 
 
115
 
#define MAIN_MODE_IDX 1
116
 
#define SETTINGS_MODE_IDX 0
117
 
 
118
 
#define ANALOGUE_CLOCK_IDX 0
119
 
#define DIGITAL_CLOCK_IDX 1
120
 
#define TEST_PATTERN_IDX 2
 
93
static unsigned long segment_step_sub_step = 0;
 
94
static unsigned long segment_step_sub = 0;
 
95
 
 
96
// flag to indicate that the drawing mode should be cycled to the next one
 
97
static bool inc_draw_mode = false;
 
98
 
 
99
// a bounce-managed button
 
100
static Bounce button( 3, 5 );
 
101
 
 
102
// the time
 
103
static int time_hours = 0;
 
104
static int time_minutes = 0;
 
105
static int time_seconds = 0;
 
106
 
 
107
// number of segments in a full display (rotation) is 60 (one per
 
108
// second) times the desired number of sub-divisions of a second
 
109
#define NUM_SECOND_SEGMENTS 5
 
110
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
121
111
 
122
112
//_____________________________________________________________________________
123
113
//                                                                         code
124
114
 
125
115
 
126
 
// activate the current minor mode
127
 
void activate_minor_mode()
128
 
{
129
 
        // reset text
130
 
        Text::reset();
131
 
        leds_off();
132
 
 
133
 
        // give the mode a chance to init
134
 
        switch( _minor_mode ) {
135
 
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
136
 
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
137
 
        }
138
 
}
139
 
 
140
 
 
141
 
// activate major mode
142
 
void activate_major_mode()
143
 
{
144
 
        // reset text
145
 
        Text::reset();
146
 
        leds_off();
147
 
 
148
 
        // give the mode a chance to init
149
 
        switch( _major_mode ) {
150
 
        case MAIN_MODE_IDX: activate_minor_mode(); break;
151
 
        case SETTINGS_MODE_IDX: settings_mode_activate(); break;
152
 
        }
153
 
}
154
 
 
155
 
 
156
 
// perform button events
157
 
void do_button_events()
158
 
{
159
 
        // loop through pending events
160
 
        while( int event = _button.get_event() )
161
 
        {
162
 
                switch( event )
163
 
                {
164
 
                case 1:
165
 
                        // short press
166
 
                        switch( _major_mode ) {
167
 
                        case MAIN_MODE_IDX:
168
 
                                switch( _minor_mode ) {
169
 
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
170
 
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
171
 
                                }
172
 
                                break;
173
 
                        case SETTINGS_MODE_IDX: settings_mode_press(); break;
174
 
                        }
175
 
                        break;
176
 
 
177
 
                case 2:
178
 
                        // long press
179
 
                        switch( _major_mode ) {
180
 
                        case MAIN_MODE_IDX:
181
 
                                if( ++_minor_mode >= 3 )
182
 
                                        _minor_mode = 0;
183
 
                                activate_minor_mode();
184
 
                                break;
185
 
                        case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
186
 
                        }
187
 
                        break;
188
 
 
189
 
                case 3:
190
 
                        // looooong press (change major mode)
191
 
                        if( ++_major_mode > 1 )
192
 
                                _major_mode = 0;
193
 
                        activate_major_mode();
194
 
                        break;
 
116
// check for button presses
 
117
void checkButtons()
 
118
{
 
119
        // update buttons
 
120
        button.update();
 
121
 
 
122
        // notice button presses
 
123
        if( button.risingEdge() )
 
124
                inc_draw_mode = true;
 
125
}
 
126
 
 
127
 
 
128
// keep track of time
 
129
void trackTime()
 
130
{
 
131
        // previous time and any carried-over milliseconds
 
132
        static unsigned long last_time = millis();
 
133
        static unsigned long carry = 0;
 
134
 
 
135
        // how many milliseonds have elapsed since we last checked?
 
136
        unsigned long next_time = millis();
 
137
        unsigned long delta = next_time - last_time + carry;
 
138
 
 
139
        // update the previous time and carried-over milliseconds
 
140
        last_time = next_time;
 
141
        carry = delta % 1000;
 
142
 
 
143
        // add the seconds that have passed to the time
 
144
        time_seconds += delta / 1000;
 
145
        while( time_seconds >= 60 ) {
 
146
                time_seconds -= 60;
 
147
                time_minutes++;
 
148
                if( time_minutes >= 60 ) {
 
149
                        time_minutes -= 60;
 
150
                        time_hours++;
 
151
                        if( time_hours >= 24 )
 
152
                                time_hours -= 24;
195
153
                }
196
154
        }
197
155
}
198
156
 
199
157
 
200
 
// draw a display segment
201
 
void draw_next_segment( bool reset )
 
158
// draw a segment for the test display
 
159
void drawNextSegment_test( bool reset )
202
160
{
203
161
        // keep track of segment
204
 
#if CLOCK_FORWARD
205
 
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
206
 
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
207
 
#else
208
 
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
209
 
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
210
 
#endif
211
 
 
212
 
        // reset the text renderer
213
 
        TextRenderer::reset_buffer();
214
 
 
215
 
        // frame reset
 
162
        static unsigned int segment = 0;
 
163
        if( reset ) segment = 0;
 
164
        segment++;
 
165
 
 
166
        // turn on inside and outside LEDs
 
167
        digitalWrite( 4, HIGH );
 
168
        digitalWrite( 13, HIGH );
 
169
 
 
170
        // display segment number in binary across in the inside LEDs,
 
171
        // with the LED on pin 12 showing the least-significant bit
 
172
        for( int a = 0; a < 8; a++ )
 
173
                digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
 
174
}
 
175
 
 
176
 
 
177
// draw a segment for the time display
 
178
void drawNextSegment_time( bool reset )
 
179
{
 
180
        static unsigned int second = 0;
 
181
        static unsigned int segment = 0;
 
182
 
 
183
        // handle display reset
216
184
        if( reset ) {
217
 
                switch( _major_mode ) {
218
 
                case MAIN_MODE_IDX:
219
 
                        switch( _minor_mode ) {
220
 
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
221
 
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
222
 
                        }
223
 
                        break;
224
 
                case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
225
 
                }
226
 
 
227
 
                // tell the text services we're starting a new frame
228
 
                Text::draw_reset();
229
 
        }
230
 
 
231
 
        // draw
232
 
        switch( _major_mode ) {
233
 
        case MAIN_MODE_IDX:
234
 
                switch( _minor_mode ) {
235
 
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
236
 
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
237
 
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
238
 
                }
239
 
                break;
240
 
        case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
241
 
        }
242
 
 
243
 
        // draw any text that was rendered
244
 
        TextRenderer::output_buffer();
245
 
 
246
 
#if CLOCK_FORWARD
247
 
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
248
 
#else
249
 
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
250
 
#endif
 
185
                second = 0;
 
186
                segment = 0;
 
187
        }
 
188
 
 
189
        // what needs to be drawn?
 
190
        bool draw_tick = !segment && second % 5 == 0;
 
191
        bool draw_second = !segment && second == time_seconds;
 
192
        bool draw_minute = !segment && second == time_minutes;
 
193
        bool draw_hour = !segment && second == time_hours;
 
194
 
 
195
        // set the LEDs
 
196
        digitalWrite( 13, HIGH );
 
197
        digitalWrite( 12, draw_tick || draw_minute );
 
198
        for( int a = 10; a <= 11; a++ )
 
199
                digitalWrite( a, draw_minute || draw_second );
 
200
        for( int a = 4; a <= 9; a++ )
 
201
                digitalWrite( 10, draw_minute | draw_second || draw_hour );
 
202
 
 
203
        // inc position
 
204
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
 
205
                segment = 0;
 
206
                second++;
 
207
        }
 
208
}
 
209
 
 
210
 
 
211
// draw a display segment
 
212
void drawNextSegment( bool reset )
 
213
{
 
214
        static int draw_mode = 0;
 
215
 
 
216
        // handle mode switch requests
 
217
        if( reset && inc_draw_mode ) {
 
218
                inc_draw_mode = false;
 
219
                draw_mode++;
 
220
                if( draw_mode >= 2 )
 
221
                        draw_mode = 0;
 
222
        }
 
223
 
 
224
        // draw the segment
 
225
        switch( draw_mode ) {
 
226
        case 0: drawNextSegment_test( reset ); break;
 
227
        case 1: drawNextSegment_time( reset ); break;
 
228
        }
251
229
}
252
230
 
253
231
 
254
232
// calculate time constants when a new pulse has occurred
255
 
void calculate_segment_times()
 
233
void calculateSegmentTimes()
256
234
{
257
235
        // check for overflows, and only recalculate times if there isn't
258
236
        // one (if there is, we'll just go with the last pulse's times)
259
 
        if( _new_pulse_at > _last_pulse_at )
 
237
        if( new_pulse_at > last_pulse_at )
260
238
        {
261
239
                // new segment stepping times
262
 
                unsigned long delta = _new_pulse_at - _last_pulse_at;
263
 
                _segment_step = delta / NUM_SEGMENTS;
264
 
                _segment_step_sub = 0;
265
 
                _segment_step_sub_step = delta % NUM_SEGMENTS;
 
240
                unsigned long delta = new_pulse_at - last_pulse_at;
 
241
                segment_step = delta / NUM_SEGMENTS;
 
242
                segment_step_sub = 0;
 
243
                segment_step_sub_step = delta % NUM_SEGMENTS;
266
244
        }
267
245
 
268
246
        // now we have dealt with this pulse, save the pulse time and
269
247
        // clear new_pulse_at, ready for the next pulse
270
 
        _last_pulse_at = _new_pulse_at;
271
 
        _new_pulse_at = 0;
 
248
        last_pulse_at = new_pulse_at;
 
249
        new_pulse_at = 0;
272
250
}
273
251
 
274
252
 
275
253
// wait until it is time to draw the next segment or a new pulse has
276
254
// occurred
277
 
void wait_till_end_of_segment( bool reset )
 
255
void waitTillNextSegment( bool reset )
278
256
{
279
257
        static unsigned long end_time = 0;
280
258
 
281
259
        // handle reset
282
260
        if( reset )
283
 
                end_time = _last_pulse_at;
 
261
                end_time = last_pulse_at;
284
262
 
285
263
        // work out the time that this segment should be displayed until
286
 
        end_time += _segment_step;
287
 
        _segment_step_sub += _segment_step_sub_step;
288
 
        if( _segment_step_sub >= NUM_SEGMENTS ) {
289
 
                _segment_step_sub -= NUM_SEGMENTS;
 
264
        end_time += segment_step;
 
265
        segment_step_sub += segment_step_sub_step;
 
266
        if( segment_step_sub >= NUM_SEGMENTS ) {
 
267
                segment_step_sub -= NUM_SEGMENTS;
290
268
                end_time++;
291
269
        }
292
270
 
293
271
        // wait
294
 
        while( micros() < end_time && !_new_pulse_at );
 
272
        while( micros() < end_time && !new_pulse_at );
295
273
}
296
274
 
297
275
 
298
276
// ISR to handle the pulses from the fan's tachiometer
299
 
void fan_pulse_handler()
 
277
void fanPulseHandler()
300
278
{
301
279
        // the fan actually sends two pulses per revolution. These pulses
302
280
        // may not be exactly evenly distributed around the rotation, so
307
285
        if( !ignore )
308
286
        {
309
287
                // set a new pulse time
310
 
                _new_pulse_at = micros();
 
288
                new_pulse_at = micros();
311
289
        }
312
290
}
313
291
 
316
294
void setup()
317
295
{
318
296
        // set up an interrupt handler on pin 2 to nitice fan pulses
319
 
        attachInterrupt( 0, fan_pulse_handler, RISING );
 
297
        attachInterrupt( 0, fanPulseHandler, RISING );
320
298
        digitalWrite( 2, HIGH );
321
299
  
322
300
        // set up output pins (4 to 13) for the led array
325
303
 
326
304
        // set up mode-switch button on pin 3
327
305
        pinMode( 3, INPUT );
328
 
        digitalWrite( 3, HIGH );
329
 
        static int event_times[] = { 5, 500, 4000, 0 };
330
 
        _button.set_event_times( event_times );
331
 
 
332
 
        // initialise RTC
333
 
        Time::init();
334
 
 
335
 
        // activate the minor mode
336
 
        activate_major_mode();
 
306
 
 
307
        // serial comms
 
308
        Serial.begin( 9600 );
337
309
}
338
310
 
339
311
 
341
313
void loop()
342
314
{
343
315
        // if there has been a new pulse, we'll be resetting the display
344
 
        bool reset = _new_pulse_at? true : false;
345
 
 
346
 
        // update button
347
 
        _button.update();
 
316
        bool reset = new_pulse_at? true : false;
348
317
 
349
318
        // only do this stuff at the start of a display cycle, to ensure
350
319
        // that no state changes mid-display
351
320
        if( reset )
352
321
        {
353
 
                // calculate segment times
354
 
                calculate_segment_times();
 
322
                // check buttons
 
323
                checkButtons();
355
324
 
356
325
                // keep track of time
357
 
                Time::update();
358
 
 
359
 
                // perform button events
360
 
                do_button_events();
 
326
                trackTime();
361
327
        }
362
328
 
363
329
        // draw this segment
364
 
        draw_next_segment( reset );
 
330
        drawNextSegment( reset );
 
331
 
 
332
        // do we need to recalculate segment times?
 
333
        if( reset )
 
334
                calculateSegmentTimes();
365
335
 
366
336
        // wait till it's time to draw the next segment
367
 
        wait_till_end_of_segment( reset );
 
337
        waitTillNextSegment( reset );
368
338
}