/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.ino

  • Committer: edam
  • Date: 2012-01-14 16:54:49 UTC
  • Revision ID: edam@waxworlds.org-20120114165449-dkgjun2pb5tr9g2a
updated schematic (switched to PNP) and added info about transistors

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
2
1
/*
3
2
 * propeller-clock.ino
4
3
 *
36
35
   13 is at the outside.
37
36
 
38
37
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
 
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on anf off in unison in the centre of the clock.
 
38
   used to indirectly drive (via a MOSFET) multiple LEDs which turn on
 
39
   and off in unison in the centre of the clock.
41
40
 
42
41
 * a button should be attached to pin 3 that grounds it when pressed.
43
42
 
44
 
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
45
 
 
46
43
Implementation details:
47
44
 
48
 
 * for a schematic, see ../project/propeller-clock.sch.
 
45
 * for a schematic, see project/propeller-clock.sch.
49
46
 
50
47
 * the timing of the drawing of the clock face is recalculated with
51
48
   every rotation of the propeller.
70
67
    - pressing the button increments the field currently being set
71
68
    - pressing and holding the button for a second cycles through the
72
69
      fields that can be set
73
 
    - pressing and holding the button for 5 seconds sets the time and
74
 
      exits "time set" mode
 
70
    - press and holding the button for 5 seconds to finish
75
71
 
76
72
******************************************************************************/
77
73
 
78
 
#include "config.h"
79
 
#include "button.h"
80
 
#include "time.h"
81
 
#include "Arduino.h"
82
 
#include "analogue_clock.h"
83
 
#include "digital_clock.h"
84
 
#include "test_pattern.h"
 
74
 
 
75
#include <Bounce.h>
85
76
 
86
77
//_____________________________________________________________________________
87
78
//                                                                         data
88
79
 
 
80
 
89
81
// when non-zero, the time (in microseconds) of a new fan pulse that
90
82
// has just occurred, which means that segment drawing needs to be
91
83
// restarted
92
 
static unsigned long _new_pulse_at = 0;
 
84
static unsigned long new_pulse_at = 0;
93
85
 
94
86
// the time (in microseconds) when the last fan pulse occurred
95
 
static unsigned long _last_pulse_at = 0;
 
87
static unsigned long last_pulse_at = 0;
96
88
 
97
89
// duration (in microseconds) that a segment should be displayed
98
 
static unsigned long _segment_step = 0;
 
90
static unsigned long segment_step = 0;
99
91
 
100
92
// remainder after divisor and a tally of the remainders for each segment
101
 
static unsigned long _segment_step_sub_step = 0;
102
 
static unsigned long _segment_step_sub = 0;
103
 
 
104
 
// the button
105
 
static Button _button( 3 );
106
 
 
107
 
// modes
108
 
static int _major_mode = 0;
109
 
static int _minor_mode = 0;
110
 
 
111
 
#define MAIN_MODE_IDX 0
112
 
 
113
 
#define ANALOGUE_CLOCK_IDX 0
114
 
#define DIGITAL_CLOCK_IDX 1
115
 
#define TEST_PATTERN_IDX 2
 
93
static unsigned long segment_step_sub_step = 0;
 
94
static unsigned long segment_step_sub = 0;
 
95
 
 
96
// flag to indicate that the drawing mode should be cycled to the next one
 
97
static bool inc_draw_mode = false;
 
98
 
 
99
// a bounce-managed button
 
100
static Bounce button( 3, 5 );
 
101
 
 
102
// the time
 
103
static int time_hours = 0;
 
104
static int time_minutes = 0;
 
105
static int time_seconds = 0;
 
106
 
 
107
// number of segments in a full display (rotation) is 60 (one per
 
108
// second) times the desired number of sub-divisions of a second
 
109
#define NUM_SECOND_SEGMENTS 5
 
110
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
116
111
 
117
112
//_____________________________________________________________________________
118
113
//                                                                         code
119
114
 
120
115
 
121
 
// activate the current minor mode
122
 
void activate_minor_mode()
 
116
// check for button presses
 
117
void checkButtons()
123
118
{
124
 
        switch( _minor_mode ) {
125
 
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
126
 
        }
 
119
        // update buttons
 
120
        button.update();
 
121
 
 
122
        // notice button presses
 
123
        if( button.risingEdge() )
 
124
                inc_draw_mode = true;
127
125
}
128
126
 
129
 
// perform button events
130
 
void do_button_events()
 
127
 
 
128
// keep track of time
 
129
void trackTime()
131
130
{
132
 
        // loop through pending events
133
 
        while( int event = _button.get_event() )
134
 
        {
135
 
                switch( event )
136
 
                {
137
 
                case 1:
138
 
                        // short press
139
 
                        switch( _major_mode ) {
140
 
                        case MAIN_MODE_IDX:
141
 
                                switch( _minor_mode ) {
142
 
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
143
 
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
144
 
                                }
145
 
                                break;
146
 
                        }
147
 
                        break;
148
 
 
149
 
                case 2:
150
 
                        // long press
151
 
                        switch( _major_mode ) {
152
 
                        case MAIN_MODE_IDX:
153
 
                                if( ++_minor_mode >= 3 )
154
 
                                        _minor_mode = 0;
155
 
                                switch( _minor_mode ) {
156
 
                                case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
157
 
                                }
158
 
                                break;
159
 
                        }
160
 
                        break;
161
 
 
162
 
                case 3:
163
 
                        // looooong press (change major mode)
164
 
                        if( ++_major_mode > 0 )
165
 
                                _major_mode = 0;
166
 
                        switch( _major_mode ) {
167
 
                        case MAIN_MODE_IDX: _minor_mode = 0; break;
168
 
                        }
169
 
                        activate_minor_mode();
170
 
                        break;
 
131
        // previous time and any carried-over milliseconds
 
132
        static unsigned long last_time = millis();
 
133
        static unsigned long carry = 0;
 
134
 
 
135
        // how many milliseonds have elapsed since we last checked?
 
136
        unsigned long next_time = millis();
 
137
        unsigned long delta = next_time - last_time + carry;
 
138
 
 
139
        // update the previous time and carried-over milliseconds
 
140
        last_time = next_time;
 
141
        carry = delta % 1000;
 
142
 
 
143
        // add the seconds that have passed to the time
 
144
        time_seconds += delta / 1000;
 
145
        while( time_seconds >= 60 ) {
 
146
                time_seconds -= 60;
 
147
                time_minutes++;
 
148
                if( time_minutes >= 60 ) {
 
149
                        time_minutes -= 60;
 
150
                        time_hours++;
 
151
                        if( time_hours >= 24 )
 
152
                                time_hours -= 24;
171
153
                }
172
154
        }
173
155
}
174
156
 
175
157
 
 
158
// draw a segment for the test display
 
159
void drawNextSegment_test( bool reset )
 
160
{
 
161
        // keep track of segment
 
162
        static unsigned int segment = 0;
 
163
        if( reset ) segment = 0;
 
164
        segment++;
 
165
 
 
166
        // turn on inside and outside LEDs
 
167
        digitalWrite( 4, HIGH );
 
168
        digitalWrite( 13, HIGH );
 
169
 
 
170
        // display segment number in binary across in the inside LEDs,
 
171
        // with the LED on pin 12 showing the least-significant bit
 
172
        for( int a = 0; a < 8; a++ )
 
173
                digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
 
174
}
 
175
 
 
176
 
 
177
// draw a segment for the time display
 
178
void drawNextSegment_time( bool reset )
 
179
{
 
180
        static unsigned int second = 0;
 
181
        static unsigned int segment = 0;
 
182
 
 
183
        // handle display reset
 
184
        if( reset ) {
 
185
                second = 0;
 
186
                segment = 0;
 
187
        }
 
188
 
 
189
        // what needs to be drawn?
 
190
        bool draw_tick = !segment && second % 5 == 0;
 
191
        bool draw_second = !segment && second == time_seconds;
 
192
        bool draw_minute = !segment && second == time_minutes;
 
193
        bool draw_hour = !segment && second == time_hours;
 
194
 
 
195
        // set the LEDs
 
196
        digitalWrite( 13, HIGH );
 
197
        digitalWrite( 12, draw_tick || draw_minute );
 
198
        for( int a = 10; a <= 11; a++ )
 
199
                digitalWrite( a, draw_minute || draw_second );
 
200
        for( int a = 4; a <= 9; a++ )
 
201
                digitalWrite( 10, draw_minute | draw_second || draw_hour );
 
202
 
 
203
        // inc position
 
204
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
 
205
                segment = 0;
 
206
                second++;
 
207
        }
 
208
}
 
209
 
 
210
 
176
211
// draw a display segment
177
 
void draw_next_segment( bool reset )
 
212
void drawNextSegment( bool reset )
178
213
{
179
 
        // keep track of segment
180
 
#if CLOCK_FORWARD
181
 
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
182
 
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
183
 
#else
184
 
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
185
 
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
186
 
#endif
187
 
 
188
 
        // draw
189
 
        switch( _major_mode ) {
190
 
        case MAIN_MODE_IDX:
191
 
                switch( _minor_mode ) {
192
 
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
193
 
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
194
 
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
195
 
                }
196
 
                break;
197
 
        }
198
 
 
199
 
#if CLOCK_FORWARD
200
 
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
201
 
#else
202
 
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
203
 
#endif
 
214
        static int draw_mode = 0;
 
215
 
 
216
        // handle mode switch requests
 
217
        if( reset && inc_draw_mode ) {
 
218
                inc_draw_mode = false;
 
219
                draw_mode++;
 
220
                if( draw_mode >= 2 )
 
221
                        draw_mode = 0;
 
222
        }
 
223
 
 
224
        // draw the segment
 
225
        switch( draw_mode ) {
 
226
        case 0: drawNextSegment_test( reset ); break;
 
227
        case 1: drawNextSegment_time( reset ); break;
 
228
        }
204
229
}
205
230
 
206
231
 
207
232
// calculate time constants when a new pulse has occurred
208
 
void calculate_segment_times()
 
233
void calculateSegmentTimes()
209
234
{
210
235
        // check for overflows, and only recalculate times if there isn't
211
236
        // one (if there is, we'll just go with the last pulse's times)
212
 
        if( _new_pulse_at > _last_pulse_at )
 
237
        if( new_pulse_at > last_pulse_at )
213
238
        {
214
239
                // new segment stepping times
215
 
                unsigned long delta = _new_pulse_at - _last_pulse_at;
216
 
                _segment_step = delta / NUM_SEGMENTS;
217
 
                _segment_step_sub = 0;
218
 
                _segment_step_sub_step = delta % NUM_SEGMENTS;
 
240
                unsigned long delta = new_pulse_at - last_pulse_at;
 
241
                segment_step = delta / NUM_SEGMENTS;
 
242
                segment_step_sub = 0;
 
243
                segment_step_sub_step = delta % NUM_SEGMENTS;
219
244
        }
220
245
 
221
246
        // now we have dealt with this pulse, save the pulse time and
222
247
        // clear new_pulse_at, ready for the next pulse
223
 
        _last_pulse_at = _new_pulse_at;
224
 
        _new_pulse_at = 0;
 
248
        last_pulse_at = new_pulse_at;
 
249
        new_pulse_at = 0;
225
250
}
226
251
 
227
252
 
228
253
// wait until it is time to draw the next segment or a new pulse has
229
254
// occurred
230
 
void wait_till_end_of_segment( bool reset )
 
255
void waitTillNextSegment( bool reset )
231
256
{
232
257
        static unsigned long end_time = 0;
233
258
 
234
259
        // handle reset
235
260
        if( reset )
236
 
                end_time = _last_pulse_at;
 
261
                end_time = last_pulse_at;
237
262
 
238
263
        // work out the time that this segment should be displayed until
239
 
        end_time += _segment_step;
240
 
        _segment_step_sub += _segment_step_sub_step;
241
 
        if( _segment_step_sub >= NUM_SEGMENTS ) {
242
 
                _segment_step_sub -= NUM_SEGMENTS;
 
264
        end_time += segment_step;
 
265
        segment_step_sub += segment_step_sub_step;
 
266
        if( segment_step_sub >= NUM_SEGMENTS ) {
 
267
                segment_step_sub -= NUM_SEGMENTS;
243
268
                end_time++;
244
269
        }
245
270
 
246
271
        // wait
247
 
        while( micros() < end_time && !_new_pulse_at );
 
272
        while( micros() < end_time && !new_pulse_at );
248
273
}
249
274
 
250
275
 
251
276
// ISR to handle the pulses from the fan's tachiometer
252
 
void fan_pulse_handler()
 
277
void fanPulseHandler()
253
278
{
254
279
        // the fan actually sends two pulses per revolution. These pulses
255
280
        // may not be exactly evenly distributed around the rotation, so
260
285
        if( !ignore )
261
286
        {
262
287
                // set a new pulse time
263
 
                _new_pulse_at = micros();
 
288
                new_pulse_at = micros();
264
289
        }
265
290
}
266
291
 
269
294
void setup()
270
295
{
271
296
        // set up an interrupt handler on pin 2 to nitice fan pulses
272
 
        attachInterrupt( 0, fan_pulse_handler, RISING );
 
297
        attachInterrupt( 0, fanPulseHandler, RISING );
273
298
        digitalWrite( 2, HIGH );
274
299
  
275
300
        // set up output pins (4 to 13) for the led array
278
303
 
279
304
        // set up mode-switch button on pin 3
280
305
        pinMode( 3, INPUT );
281
 
        digitalWrite( 3, HIGH );
282
 
        static int event_times[] = { 5, 500, 4000, 0 };
283
 
        _button.set_event_times( event_times );
284
 
 
285
 
        // get time from RTC
286
 
        Time::init();
287
 
 
288
 
        // activate the minor mode
289
 
        switch( _major_mode ) {
290
 
        case MAIN_MODE_IDX: activate_minor_mode(); break;
291
 
        }
 
306
 
 
307
        // serial comms
 
308
        Serial.begin( 9600 );
292
309
}
293
310
 
294
311
 
296
313
void loop()
297
314
{
298
315
        // if there has been a new pulse, we'll be resetting the display
299
 
        bool reset = _new_pulse_at? true : false;
300
 
 
301
 
        // update button
302
 
        _button.update();
 
316
        bool reset = new_pulse_at? true : false;
303
317
 
304
318
        // only do this stuff at the start of a display cycle, to ensure
305
319
        // that no state changes mid-display
306
320
        if( reset )
307
321
        {
308
 
                // calculate segment times
309
 
                calculate_segment_times();
 
322
                // check buttons
 
323
                checkButtons();
310
324
 
311
325
                // keep track of time
312
 
                Time::update();
313
 
 
314
 
                // perform button events
315
 
                do_button_events();
 
326
                trackTime();
316
327
        }
317
328
 
318
329
        // draw this segment
319
 
        draw_next_segment( reset );
 
330
        drawNextSegment( reset );
 
331
 
 
332
        // do we need to recalculate segment times?
 
333
        if( reset )
 
334
                calculateSegmentTimes();
320
335
 
321
336
        // wait till it's time to draw the next segment
322
 
        wait_till_end_of_segment( reset );
 
337
        waitTillNextSegment( reset );
323
338
}