70
67
- pressing the button increments the field currently being set
71
68
- pressing and holding the button for a second cycles through the
72
69
fields that can be set
73
- pressing and holding the button for 5 seconds sets the time and
70
- press and holding the button for 5 seconds to finish
76
72
******************************************************************************/
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
86
77
//_____________________________________________________________________________
89
81
// when non-zero, the time (in microseconds) of a new fan pulse that
90
82
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
84
static unsigned long new_pulse_at = 0;
94
86
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
87
static unsigned long last_pulse_at = 0;
97
89
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
90
static unsigned long segment_step = 0;
100
92
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
93
static unsigned long segment_step_sub_step = 0;
94
static unsigned long segment_step_sub = 0;
96
// flag to indicate that the drawing mode should be cycled to the next one
97
static bool inc_draw_mode = false;
99
// a bounce-managed button
100
static Bounce button( 3, 5 );
103
static int time_hours = 0;
104
static int time_minutes = 0;
105
static int time_seconds = 0;
107
// number of segments in a full display (rotation) is 60 (one per
108
// second) times the desired number of sub-divisions of a second
109
#define NUM_SECOND_SEGMENTS 5
110
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
117
112
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
116
// check for button presses
124
switch( _minor_mode ) {
125
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
122
// notice button presses
123
if( button.risingEdge() )
124
inc_draw_mode = true;
129
// perform button events
130
void do_button_events()
128
// keep track of time
132
// loop through pending events
133
while( int event = _button.get_event() )
139
switch( _major_mode ) {
141
switch( _minor_mode ) {
142
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
143
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
151
switch( _major_mode ) {
153
if( ++_minor_mode >= 3 )
155
switch( _minor_mode ) {
156
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
163
// looooong press (change major mode)
164
if( ++_major_mode > 0 )
166
switch( _major_mode ) {
167
case MAIN_MODE_IDX: _minor_mode = 0; break;
169
activate_minor_mode();
131
// previous time and any carried-over milliseconds
132
static unsigned long last_time = millis();
133
static unsigned long carry = 0;
135
// how many milliseonds have elapsed since we last checked?
136
unsigned long next_time = millis();
137
unsigned long delta = next_time - last_time + carry;
139
// update the previous time and carried-over milliseconds
140
last_time = next_time;
141
carry = delta % 1000;
143
// add the seconds that have passed to the time
144
time_seconds += delta / 1000;
145
while( time_seconds >= 60 ) {
148
if( time_minutes >= 60 ) {
151
if( time_hours >= 24 )
158
// draw a segment for the test display
159
void drawNextSegment_test( bool reset )
161
// keep track of segment
162
static unsigned int segment = 0;
163
if( reset ) segment = 0;
166
// turn on inside and outside LEDs
167
digitalWrite( 4, HIGH );
168
digitalWrite( 13, HIGH );
170
// display segment number in binary across in the inside LEDs,
171
// with the LED on pin 12 showing the least-significant bit
172
for( int a = 0; a < 8; a++ )
173
digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
177
// draw a segment for the time display
178
void drawNextSegment_time( bool reset )
180
static unsigned int second = 0;
181
static unsigned int segment = 0;
183
// handle display reset
189
// what needs to be drawn?
190
bool draw_tick = !segment && second % 5 == 0;
191
bool draw_second = !segment && second == time_seconds;
192
bool draw_minute = !segment && second == time_minutes;
193
bool draw_hour = !segment && second == time_hours;
196
digitalWrite( 13, HIGH );
197
digitalWrite( 12, draw_tick || draw_minute );
198
for( int a = 10; a <= 11; a++ )
199
digitalWrite( a, draw_minute || draw_second );
200
for( int a = 4; a <= 9; a++ )
201
digitalWrite( 10, draw_minute | draw_second || draw_hour );
204
if( ++segment >= NUM_SECOND_SEGMENTS ) {
176
211
// draw a display segment
177
void draw_next_segment( bool reset )
212
void drawNextSegment( bool reset )
179
// keep track of segment
181
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
182
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
184
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
185
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
189
switch( _major_mode ) {
191
switch( _minor_mode ) {
192
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
193
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
194
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
200
if( ++segment >= NUM_SEGMENTS ) segment = 0;
202
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
214
static int draw_mode = 0;
216
// handle mode switch requests
217
if( reset && inc_draw_mode ) {
218
inc_draw_mode = false;
225
switch( draw_mode ) {
226
case 0: drawNextSegment_test( reset ); break;
227
case 1: drawNextSegment_time( reset ); break;
207
232
// calculate time constants when a new pulse has occurred
208
void calculate_segment_times()
233
void calculateSegmentTimes()
210
235
// check for overflows, and only recalculate times if there isn't
211
236
// one (if there is, we'll just go with the last pulse's times)
212
if( _new_pulse_at > _last_pulse_at )
237
if( new_pulse_at > last_pulse_at )
214
239
// new segment stepping times
215
unsigned long delta = _new_pulse_at - _last_pulse_at;
216
_segment_step = delta / NUM_SEGMENTS;
217
_segment_step_sub = 0;
218
_segment_step_sub_step = delta % NUM_SEGMENTS;
240
unsigned long delta = new_pulse_at - last_pulse_at;
241
segment_step = delta / NUM_SEGMENTS;
242
segment_step_sub = 0;
243
segment_step_sub_step = delta % NUM_SEGMENTS;
221
246
// now we have dealt with this pulse, save the pulse time and
222
247
// clear new_pulse_at, ready for the next pulse
223
_last_pulse_at = _new_pulse_at;
248
last_pulse_at = new_pulse_at;
228
253
// wait until it is time to draw the next segment or a new pulse has
230
void wait_till_end_of_segment( bool reset )
255
void waitTillNextSegment( bool reset )
232
257
static unsigned long end_time = 0;
236
end_time = _last_pulse_at;
261
end_time = last_pulse_at;
238
263
// work out the time that this segment should be displayed until
239
end_time += _segment_step;
240
_segment_step_sub += _segment_step_sub_step;
241
if( _segment_step_sub >= NUM_SEGMENTS ) {
242
_segment_step_sub -= NUM_SEGMENTS;
264
end_time += segment_step;
265
segment_step_sub += segment_step_sub_step;
266
if( segment_step_sub >= NUM_SEGMENTS ) {
267
segment_step_sub -= NUM_SEGMENTS;
247
while( micros() < end_time && !_new_pulse_at );
272
while( micros() < end_time && !new_pulse_at );
251
276
// ISR to handle the pulses from the fan's tachiometer
252
void fan_pulse_handler()
277
void fanPulseHandler()
254
279
// the fan actually sends two pulses per revolution. These pulses
255
280
// may not be exactly evenly distributed around the rotation, so