/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.ino

  • Committer: edam
  • Date: 2012-01-14 17:31:00 UTC
  • Revision ID: edam@waxworlds.org-20120114173100-6gt6jte0j40cchj8
initialise from real-time clock; updated Makefile

Show diffs side-by-side

added added

removed removed

Lines of Context:
1
 
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
2
1
/*
3
2
 * propeller-clock.ino
4
3
 *
75
74
 
76
75
******************************************************************************/
77
76
 
78
 
#include "config.h"
79
 
#include "button.h"
80
 
#include "time.h"
81
 
#include "Arduino.h"
82
 
#include "analogue_clock.h"
83
 
#include "digital_clock.h"
84
 
#include "test_pattern.h"
 
77
 
 
78
#include <Bounce.h>
 
79
#include <DS1307.h>
 
80
#include <Wire.h>
85
81
 
86
82
//_____________________________________________________________________________
87
83
//                                                                         data
88
84
 
 
85
 
89
86
// when non-zero, the time (in microseconds) of a new fan pulse that
90
87
// has just occurred, which means that segment drawing needs to be
91
88
// restarted
92
 
static unsigned long _new_pulse_at = 0;
 
89
static unsigned long new_pulse_at = 0;
93
90
 
94
91
// the time (in microseconds) when the last fan pulse occurred
95
 
static unsigned long _last_pulse_at = 0;
 
92
static unsigned long last_pulse_at = 0;
96
93
 
97
94
// duration (in microseconds) that a segment should be displayed
98
 
static unsigned long _segment_step = 0;
 
95
static unsigned long segment_step = 0;
99
96
 
100
97
// remainder after divisor and a tally of the remainders for each segment
101
 
static unsigned long _segment_step_sub_step = 0;
102
 
static unsigned long _segment_step_sub = 0;
103
 
 
104
 
// the button
105
 
static Button _button( 3 );
106
 
 
107
 
// modes
108
 
static int _major_mode = 0;
109
 
static int _minor_mode = 0;
110
 
 
111
 
#define MAIN_MODE_IDX 0
112
 
 
113
 
#define ANALOGUE_CLOCK_IDX 0
114
 
#define DIGITAL_CLOCK_IDX 1
115
 
#define TEST_PATTERN_IDX 2
 
98
static unsigned long segment_step_sub_step = 0;
 
99
static unsigned long segment_step_sub = 0;
 
100
 
 
101
// flag to indicate that the drawing mode should be cycled to the next one
 
102
static bool inc_draw_mode = false;
 
103
 
 
104
// a bounce-managed button
 
105
static Bounce button( 3, 5 );
 
106
 
 
107
// the time
 
108
static int time_hours = 0;
 
109
static int time_minutes = 0;
 
110
static int time_seconds = 0;
 
111
 
 
112
// number of segments in a full display (rotation) is 60 (one per
 
113
// second) times the desired number of sub-divisions of a second
 
114
#define NUM_SECOND_SEGMENTS 5
 
115
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
116
116
 
117
117
//_____________________________________________________________________________
118
118
//                                                                         code
119
119
 
120
120
 
121
 
// activate the current minor mode
122
 
void activate_minor_mode()
 
121
// check for button presses
 
122
void checkButtons()
123
123
{
124
 
        switch( _minor_mode ) {
125
 
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
126
 
        }
 
124
        // update buttons
 
125
        button.update();
 
126
 
 
127
        // notice button presses
 
128
        if( button.risingEdge() )
 
129
                inc_draw_mode = true;
127
130
}
128
131
 
129
 
// perform button events
130
 
void do_button_events()
 
132
 
 
133
// keep track of time
 
134
void trackTime()
131
135
{
132
 
        // loop through pending events
133
 
        while( int event = _button.get_event() )
134
 
        {
135
 
                switch( event )
136
 
                {
137
 
                case 1:
138
 
                        // short press
139
 
                        switch( _major_mode ) {
140
 
                        case MAIN_MODE_IDX:
141
 
                                switch( _minor_mode ) {
142
 
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
143
 
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
144
 
                                }
145
 
                                break;
146
 
                        }
147
 
                        break;
148
 
 
149
 
                case 2:
150
 
                        // long press
151
 
                        switch( _major_mode ) {
152
 
                        case MAIN_MODE_IDX:
153
 
                                if( ++_minor_mode >= 3 )
154
 
                                        _minor_mode = 0;
155
 
                                switch( _minor_mode ) {
156
 
                                case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
157
 
                                }
158
 
                                break;
159
 
                        }
160
 
                        break;
161
 
 
162
 
                case 3:
163
 
                        // looooong press (change major mode)
164
 
                        if( ++_major_mode > 0 )
165
 
                                _major_mode = 0;
166
 
                        switch( _major_mode ) {
167
 
                        case MAIN_MODE_IDX: _minor_mode = 0; break;
168
 
                        }
169
 
                        activate_minor_mode();
170
 
                        break;
 
136
        // previous time and any carried-over milliseconds
 
137
        static unsigned long last_time = millis();
 
138
        static unsigned long carry = 0;
 
139
 
 
140
        // how many milliseonds have elapsed since we last checked?
 
141
        unsigned long next_time = millis();
 
142
        unsigned long delta = next_time - last_time + carry;
 
143
 
 
144
        // update the previous time and carried-over milliseconds
 
145
        last_time = next_time;
 
146
        carry = delta % 1000;
 
147
 
 
148
        // add the seconds that have passed to the time
 
149
        time_seconds += delta / 1000;
 
150
        while( time_seconds >= 60 ) {
 
151
                time_seconds -= 60;
 
152
                time_minutes++;
 
153
                if( time_minutes >= 60 ) {
 
154
                        time_minutes -= 60;
 
155
                        time_hours++;
 
156
                        if( time_hours >= 24 )
 
157
                                time_hours -= 24;
171
158
                }
172
159
        }
173
160
}
174
161
 
175
162
 
 
163
// draw a segment for the test display
 
164
void drawNextSegment_test( bool reset )
 
165
{
 
166
        // keep track of segment
 
167
        static unsigned int segment = 0;
 
168
        if( reset ) segment = 0;
 
169
        segment++;
 
170
 
 
171
        // turn on inside and outside LEDs
 
172
        digitalWrite( 4, HIGH );
 
173
        digitalWrite( 13, HIGH );
 
174
 
 
175
        // display segment number in binary across in the inside LEDs,
 
176
        // with the LED on pin 12 showing the least-significant bit
 
177
        for( int a = 0; a < 8; a++ )
 
178
                digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
 
179
}
 
180
 
 
181
 
 
182
// draw a segment for the time display
 
183
void drawNextSegment_time( bool reset )
 
184
{
 
185
        static unsigned int second = 0;
 
186
        static unsigned int segment = 0;
 
187
 
 
188
        // handle display reset
 
189
        if( reset ) {
 
190
                second = 0;
 
191
                segment = 0;
 
192
        }
 
193
 
 
194
        // what needs to be drawn?
 
195
        bool draw_tick = !segment && second % 5 == 0;
 
196
        bool draw_second = !segment && second == time_seconds;
 
197
        bool draw_minute = !segment && second == time_minutes;
 
198
        bool draw_hour = !segment && second == time_hours;
 
199
 
 
200
        // set the LEDs
 
201
        digitalWrite( 13, HIGH );
 
202
        digitalWrite( 12, draw_tick || draw_minute );
 
203
        for( int a = 10; a <= 11; a++ )
 
204
                digitalWrite( a, draw_minute || draw_second );
 
205
        for( int a = 4; a <= 9; a++ )
 
206
                digitalWrite( 10, draw_minute | draw_second || draw_hour );
 
207
 
 
208
        // inc position
 
209
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
 
210
                segment = 0;
 
211
                second++;
 
212
        }
 
213
}
 
214
 
 
215
 
176
216
// draw a display segment
177
 
void draw_next_segment( bool reset )
 
217
void drawNextSegment( bool reset )
178
218
{
179
 
        // keep track of segment
180
 
#if CLOCK_FORWARD
181
 
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
182
 
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
183
 
#else
184
 
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
185
 
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
186
 
#endif
187
 
 
188
 
        // draw
189
 
        switch( _major_mode ) {
190
 
        case MAIN_MODE_IDX:
191
 
                switch( _minor_mode ) {
192
 
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
193
 
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
194
 
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
195
 
                }
196
 
                break;
197
 
        }
198
 
 
199
 
#if CLOCK_FORWARD
200
 
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
201
 
#else
202
 
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
203
 
#endif
 
219
        static int draw_mode = 0;
 
220
 
 
221
        // handle mode switch requests
 
222
        if( reset && inc_draw_mode ) {
 
223
                inc_draw_mode = false;
 
224
                draw_mode++;
 
225
                if( draw_mode >= 2 )
 
226
                        draw_mode = 0;
 
227
        }
 
228
 
 
229
        // draw the segment
 
230
        switch( draw_mode ) {
 
231
        case 0: drawNextSegment_test( reset ); break;
 
232
        case 1: drawNextSegment_time( reset ); break;
 
233
        }
204
234
}
205
235
 
206
236
 
207
237
// calculate time constants when a new pulse has occurred
208
 
void calculate_segment_times()
 
238
void calculateSegmentTimes()
209
239
{
210
240
        // check for overflows, and only recalculate times if there isn't
211
241
        // one (if there is, we'll just go with the last pulse's times)
212
 
        if( _new_pulse_at > _last_pulse_at )
 
242
        if( new_pulse_at > last_pulse_at )
213
243
        {
214
244
                // new segment stepping times
215
 
                unsigned long delta = _new_pulse_at - _last_pulse_at;
216
 
                _segment_step = delta / NUM_SEGMENTS;
217
 
                _segment_step_sub = 0;
218
 
                _segment_step_sub_step = delta % NUM_SEGMENTS;
 
245
                unsigned long delta = new_pulse_at - last_pulse_at;
 
246
                segment_step = delta / NUM_SEGMENTS;
 
247
                segment_step_sub = 0;
 
248
                segment_step_sub_step = delta % NUM_SEGMENTS;
219
249
        }
220
250
 
221
251
        // now we have dealt with this pulse, save the pulse time and
222
252
        // clear new_pulse_at, ready for the next pulse
223
 
        _last_pulse_at = _new_pulse_at;
224
 
        _new_pulse_at = 0;
 
253
        last_pulse_at = new_pulse_at;
 
254
        new_pulse_at = 0;
225
255
}
226
256
 
227
257
 
228
258
// wait until it is time to draw the next segment or a new pulse has
229
259
// occurred
230
 
void wait_till_end_of_segment( bool reset )
 
260
void waitTillNextSegment( bool reset )
231
261
{
232
262
        static unsigned long end_time = 0;
233
263
 
234
264
        // handle reset
235
265
        if( reset )
236
 
                end_time = _last_pulse_at;
 
266
                end_time = last_pulse_at;
237
267
 
238
268
        // work out the time that this segment should be displayed until
239
 
        end_time += _segment_step;
240
 
        _segment_step_sub += _segment_step_sub_step;
241
 
        if( _segment_step_sub >= NUM_SEGMENTS ) {
242
 
                _segment_step_sub -= NUM_SEGMENTS;
 
269
        end_time += segment_step;
 
270
        segment_step_sub += segment_step_sub_step;
 
271
        if( segment_step_sub >= NUM_SEGMENTS ) {
 
272
                segment_step_sub -= NUM_SEGMENTS;
243
273
                end_time++;
244
274
        }
245
275
 
246
276
        // wait
247
 
        while( micros() < end_time && !_new_pulse_at );
 
277
        while( micros() < end_time && !new_pulse_at );
248
278
}
249
279
 
250
280
 
251
281
// ISR to handle the pulses from the fan's tachiometer
252
 
void fan_pulse_handler()
 
282
void fanPulseHandler()
253
283
{
254
284
        // the fan actually sends two pulses per revolution. These pulses
255
285
        // may not be exactly evenly distributed around the rotation, so
260
290
        if( !ignore )
261
291
        {
262
292
                // set a new pulse time
263
 
                _new_pulse_at = micros();
 
293
                new_pulse_at = micros();
264
294
        }
265
295
}
266
296
 
269
299
void setup()
270
300
{
271
301
        // set up an interrupt handler on pin 2 to nitice fan pulses
272
 
        attachInterrupt( 0, fan_pulse_handler, RISING );
 
302
        attachInterrupt( 0, fanPulseHandler, RISING );
273
303
        digitalWrite( 2, HIGH );
274
304
  
275
305
        // set up output pins (4 to 13) for the led array
278
308
 
279
309
        // set up mode-switch button on pin 3
280
310
        pinMode( 3, INPUT );
281
 
        digitalWrite( 3, HIGH );
282
 
        static int event_times[] = { 5, 500, 4000, 0 };
283
 
        _button.set_event_times( event_times );
284
 
 
285
 
        // activate the minor mode
286
 
        switch( _major_mode ) {
287
 
        case MAIN_MODE_IDX: activate_minor_mode(); break;
288
 
        }
 
311
 
 
312
        // get the time from the real-time clock
 
313
        int rtc_data[ 7 ];
 
314
        RTC.get( rtc_data, true );
 
315
        time_hours = rtc_data[ DS1307_HR ];
 
316
        time_minutes = rtc_data[ DS1307_MIN ];
 
317
        time_seconds = rtc_data[ DS1307_SEC ];
 
318
 
 
319
        // serial comms
 
320
        Serial.begin( 9600 );
289
321
}
290
322
 
291
323
 
293
325
void loop()
294
326
{
295
327
        // if there has been a new pulse, we'll be resetting the display
296
 
        bool reset = _new_pulse_at? true : false;
297
 
 
298
 
        // update button
299
 
        _button.update();
 
328
        bool reset = new_pulse_at? true : false;
300
329
 
301
330
        // only do this stuff at the start of a display cycle, to ensure
302
331
        // that no state changes mid-display
303
332
        if( reset )
304
333
        {
305
 
                // calculate segment times
306
 
                calculate_segment_times();
 
334
                // check buttons
 
335
                checkButtons();
307
336
 
308
337
                // keep track of time
309
 
                Time &time = Time::get_instance();
310
 
                time.update();
311
 
 
312
 
                // perform button events
313
 
                do_button_events();
 
338
                trackTime();
314
339
        }
315
340
 
316
341
        // draw this segment
317
 
        draw_next_segment( reset );
 
342
        drawNextSegment( reset );
 
343
 
 
344
        // do we need to recalculate segment times?
 
345
        if( reset )
 
346
                calculateSegmentTimes();
318
347
 
319
348
        // wait till it's time to draw the next segment
320
 
        wait_till_end_of_segment( reset );
 
349
        waitTillNextSegment( reset );
321
350
}