76
75
******************************************************************************/
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
86
82
//_____________________________________________________________________________
89
86
// when non-zero, the time (in microseconds) of a new fan pulse that
90
87
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
89
static unsigned long new_pulse_at = 0;
94
91
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
92
static unsigned long last_pulse_at = 0;
97
94
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
95
static unsigned long segment_step = 0;
100
97
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
98
static unsigned long segment_step_sub_step = 0;
99
static unsigned long segment_step_sub = 0;
101
// flag to indicate that the drawing mode should be cycled to the next one
102
static bool inc_draw_mode = false;
104
// a bounce-managed button
105
static Bounce button( 3, 5 );
108
static int time_hours = 0;
109
static int time_minutes = 0;
110
static int time_seconds = 0;
112
// number of segments in a full display (rotation) is 60 (one per
113
// second) times the desired number of sub-divisions of a second
114
#define NUM_SECOND_SEGMENTS 5
115
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
117
117
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
121
// check for button presses
124
switch( _minor_mode ) {
125
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
127
// notice button presses
128
if( button.risingEdge() )
129
inc_draw_mode = true;
129
// perform button events
130
void do_button_events()
133
// keep track of time
132
// loop through pending events
133
while( int event = _button.get_event() )
139
switch( _major_mode ) {
141
switch( _minor_mode ) {
142
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
143
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
151
switch( _major_mode ) {
153
if( ++_minor_mode >= 3 )
155
switch( _minor_mode ) {
156
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
163
// looooong press (change major mode)
164
if( ++_major_mode > 0 )
166
switch( _major_mode ) {
167
case MAIN_MODE_IDX: _minor_mode = 0; break;
169
activate_minor_mode();
136
// previous time and any carried-over milliseconds
137
static unsigned long last_time = millis();
138
static unsigned long carry = 0;
140
// how many milliseonds have elapsed since we last checked?
141
unsigned long next_time = millis();
142
unsigned long delta = next_time - last_time + carry;
144
// update the previous time and carried-over milliseconds
145
last_time = next_time;
146
carry = delta % 1000;
148
// add the seconds that have passed to the time
149
time_seconds += delta / 1000;
150
while( time_seconds >= 60 ) {
153
if( time_minutes >= 60 ) {
156
if( time_hours >= 24 )
163
// draw a segment for the test display
164
void drawNextSegment_test( bool reset )
166
// keep track of segment
167
static unsigned int segment = 0;
168
if( reset ) segment = 0;
171
// turn on inside and outside LEDs
172
digitalWrite( 4, HIGH );
173
digitalWrite( 13, HIGH );
175
// display segment number in binary across in the inside LEDs,
176
// with the LED on pin 12 showing the least-significant bit
177
for( int a = 0; a < 8; a++ )
178
digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
182
// draw a segment for the time display
183
void drawNextSegment_time( bool reset )
185
static unsigned int second = 0;
186
static unsigned int segment = 0;
188
// handle display reset
194
// what needs to be drawn?
195
bool draw_tick = !segment && second % 5 == 0;
196
bool draw_second = !segment && second == time_seconds;
197
bool draw_minute = !segment && second == time_minutes;
198
bool draw_hour = !segment && second == time_hours;
201
digitalWrite( 13, HIGH );
202
digitalWrite( 12, draw_tick || draw_minute );
203
for( int a = 10; a <= 11; a++ )
204
digitalWrite( a, draw_minute || draw_second );
205
for( int a = 4; a <= 9; a++ )
206
digitalWrite( 10, draw_minute | draw_second || draw_hour );
209
if( ++segment >= NUM_SECOND_SEGMENTS ) {
176
216
// draw a display segment
177
void draw_next_segment( bool reset )
217
void drawNextSegment( bool reset )
179
// keep track of segment
181
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
182
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
184
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
185
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
189
switch( _major_mode ) {
191
switch( _minor_mode ) {
192
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
193
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
194
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
200
if( ++segment >= NUM_SEGMENTS ) segment = 0;
202
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
219
static int draw_mode = 0;
221
// handle mode switch requests
222
if( reset && inc_draw_mode ) {
223
inc_draw_mode = false;
230
switch( draw_mode ) {
231
case 0: drawNextSegment_test( reset ); break;
232
case 1: drawNextSegment_time( reset ); break;
207
237
// calculate time constants when a new pulse has occurred
208
void calculate_segment_times()
238
void calculateSegmentTimes()
210
240
// check for overflows, and only recalculate times if there isn't
211
241
// one (if there is, we'll just go with the last pulse's times)
212
if( _new_pulse_at > _last_pulse_at )
242
if( new_pulse_at > last_pulse_at )
214
244
// new segment stepping times
215
unsigned long delta = _new_pulse_at - _last_pulse_at;
216
_segment_step = delta / NUM_SEGMENTS;
217
_segment_step_sub = 0;
218
_segment_step_sub_step = delta % NUM_SEGMENTS;
245
unsigned long delta = new_pulse_at - last_pulse_at;
246
segment_step = delta / NUM_SEGMENTS;
247
segment_step_sub = 0;
248
segment_step_sub_step = delta % NUM_SEGMENTS;
221
251
// now we have dealt with this pulse, save the pulse time and
222
252
// clear new_pulse_at, ready for the next pulse
223
_last_pulse_at = _new_pulse_at;
253
last_pulse_at = new_pulse_at;
228
258
// wait until it is time to draw the next segment or a new pulse has
230
void wait_till_end_of_segment( bool reset )
260
void waitTillNextSegment( bool reset )
232
262
static unsigned long end_time = 0;
236
end_time = _last_pulse_at;
266
end_time = last_pulse_at;
238
268
// work out the time that this segment should be displayed until
239
end_time += _segment_step;
240
_segment_step_sub += _segment_step_sub_step;
241
if( _segment_step_sub >= NUM_SEGMENTS ) {
242
_segment_step_sub -= NUM_SEGMENTS;
269
end_time += segment_step;
270
segment_step_sub += segment_step_sub_step;
271
if( segment_step_sub >= NUM_SEGMENTS ) {
272
segment_step_sub -= NUM_SEGMENTS;
247
while( micros() < end_time && !_new_pulse_at );
277
while( micros() < end_time && !new_pulse_at );
251
281
// ISR to handle the pulses from the fan's tachiometer
252
void fan_pulse_handler()
282
void fanPulseHandler()
254
284
// the fan actually sends two pulses per revolution. These pulses
255
285
// may not be exactly evenly distributed around the rotation, so