4
* Copyright (C) 2011 Tim Marston <tim@ed.am> and Dan Marston.
6
* This file is part of propeller-clock (hereafter referred to as "this
7
* program"). See http://ed.am/dev/software/arduino/propeller-clock for more
10
* This program is free software: you can redistribute it and/or modify
11
* it under the terms of the GNU Lesser General Public License as published
12
* by the Free Software Foundation, either version 3 of the License, or
13
* (at your option) any later version.
15
* This program is distributed in the hope that it will be useful,
16
* but WITHOUT ANY WARRANTY; without even the implied warranty of
17
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18
* GNU Lesser General Public License for more details.
20
* You should have received a copy of the GNU Lesser General Public License
21
* along with this program. If not, see <http://www.gnu.org/licenses/>.
24
/******************************************************************************
28
* a PC fan is wired up to a 12V power supply
30
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
33
* the pins 4 to 13 on the arduino should directly drive an LED (the
34
LED on pin 4 is in the centre of the clock face and the LED on pin
37
* if a longer hand (and a larger clock face) is desired, pin 4 can be
38
used to indirectly drive a transistor which in turn drives several
39
LEDs that turn on anf off in unison in the centre of the clock.
41
* a button should be attached to pin 3 that grounds it when pressed.
43
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
45
Implementation details:
47
* for a schematic, see ../project/propeller-clock.sch.
49
* the timing of the drawing of the clock face is recalculated with
50
every rotation of the propeller.
52
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
53
software skips every other one. This means that the clock may
54
appear upside-down if started with the propeller in the wrong
55
position. You will need to experiment to dicsover the position that
56
the propeller must be in when starting the clock.
60
* pressing the button cycles between variations of the current
63
* pressing and holding the button for a second cycles between display
64
modes (e.g., analogue and digital).
66
* pressing and holding the button for 5 seconds enters "time set"
67
mode. In this mode, the following applies:
68
- the field that is being set flashes
69
- pressing the button increments the field currently being set
70
- pressing and holding the button for a second cycles through the
71
fields that can be set
72
- pressing and holding the button for 5 seconds sets the time and
75
******************************************************************************/
82
//_____________________________________________________________________________
86
// when non-zero, the time (in microseconds) of a new fan pulse that
87
// has just occurred, which means that segment drawing needs to be
89
static unsigned long new_pulse_at = 0;
91
// the time (in microseconds) when the last fan pulse occurred
92
static unsigned long last_pulse_at = 0;
94
// duration (in microseconds) that a segment should be displayed
95
static unsigned long segment_step = 0;
97
// remainder after divisor and a tally of the remainders for each segment
98
static unsigned long segment_step_sub_step = 0;
99
static unsigned long segment_step_sub = 0;
101
// flag to indicate that the drawing mode should be cycled to the next one
102
static bool inc_draw_mode = false;
104
// a bounce-managed button
105
static Bounce button( 3, 50 );
108
static int time_hours = 0;
109
static int time_minutes = 0;
110
static int time_seconds = 0;
112
// number of segments in a full display (rotation) is 60 (one per
113
// second) times the desired number of sub-divisions of a second
114
#define NUM_SECOND_SEGMENTS 5
115
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
117
//_____________________________________________________________________________
121
// check for button presses
127
// notice button presses
128
if( button.risingEdge() )
129
inc_draw_mode = true;
133
// keep track of time
136
// previous time and any carried-over milliseconds
137
static unsigned long last_time = millis();
138
static unsigned long carry = 0;
140
// how many milliseonds have elapsed since we last checked?
141
unsigned long next_time = millis();
142
unsigned long delta = next_time - last_time + carry;
144
// update the previous time and carried-over milliseconds
145
last_time = next_time;
146
carry = delta % 1000;
148
// add the seconds that have passed to the time
149
time_seconds += delta / 1000;
150
while( time_seconds >= 60 ) {
153
if( time_minutes >= 60 ) {
156
if( time_hours >= 24 )
163
// turn an led on/off
164
void ledOn( int num, bool on )
166
if( num < 0 || num > 9 ) return;
168
// convert to pin no.
171
// pin 4 needs to be inverted (it's driving a PNP)
172
if( num == 4 ) on = !on;
174
digitalWrite( num, on? HIGH : LOW );
178
// draw a segment for the test display
179
void drawNextSegment_test( bool reset )
181
// keep track of segment
182
static unsigned int segment = 0;
183
if( reset ) segment = 0;
186
// turn on inside and outside LEDs
190
// display segment number in binary across in the inside LEDs,
191
// with the LED on pin 12 showing the least-significant bit
192
for( int a = 0; a < 8; a++ )
193
ledOn( 8 - a, ( segment >> a ) & 1 );
197
// draw a segment for the time display
198
void drawNextSegment_time( bool reset )
200
static int second = 0;
201
static int segment = 0;
203
// handle display reset
209
// what needs to be drawn?
210
bool draw_tick = !segment && second % 5 == 0;
211
bool draw_second = !segment && second == time_seconds;
212
bool draw_minute = !segment && second == time_minutes;
213
bool draw_hour = !segment && second == time_hours;
217
ledOn( 8, draw_tick || draw_minute );
218
for( int a = 6; a <= 7; a++ )
219
ledOn( a, draw_minute || draw_second );
220
for( int a = 0; a <= 5; a++ )
221
ledOn( a, draw_minute || draw_second || draw_hour );
224
if( ++segment >= NUM_SECOND_SEGMENTS ) {
231
// draw a display segment
232
void drawNextSegment( bool reset )
234
static int draw_mode = 0;
236
// handle mode switch requests
237
if( reset && inc_draw_mode ) {
238
inc_draw_mode = false;
245
switch( draw_mode ) {
246
case 0: drawNextSegment_test( reset ); break;
247
case 1: drawNextSegment_time( reset ); break;
252
// calculate time constants when a new pulse has occurred
253
void calculateSegmentTimes()
255
// check for overflows, and only recalculate times if there isn't
256
// one (if there is, we'll just go with the last pulse's times)
257
if( new_pulse_at > last_pulse_at )
259
// new segment stepping times
260
unsigned long delta = new_pulse_at - last_pulse_at;
261
segment_step = delta / NUM_SEGMENTS;
262
segment_step_sub = 0;
263
segment_step_sub_step = delta % NUM_SEGMENTS;
266
// now we have dealt with this pulse, save the pulse time and
267
// clear new_pulse_at, ready for the next pulse
268
last_pulse_at = new_pulse_at;
273
// wait until it is time to draw the next segment or a new pulse has
275
void waitTillNextSegment( bool reset )
277
static unsigned long end_time = 0;
281
end_time = last_pulse_at;
283
// work out the time that this segment should be displayed until
284
end_time += segment_step;
285
segment_step_sub += segment_step_sub_step;
286
if( segment_step_sub >= NUM_SEGMENTS ) {
287
segment_step_sub -= NUM_SEGMENTS;
292
while( micros() < end_time && !new_pulse_at );
296
// ISR to handle the pulses from the fan's tachiometer
297
void fanPulseHandler()
299
// the fan actually sends two pulses per revolution. These pulses
300
// may not be exactly evenly distributed around the rotation, so
301
// we can't recalculate times on every pulse. Instead, we ignore
302
// every other pulse so timings are based on a complete rotation.
303
static bool ignore = true;
307
// set a new pulse time
308
new_pulse_at = micros();
316
// set up an interrupt handler on pin 2 to nitice fan pulses
317
attachInterrupt( 0, fanPulseHandler, RISING );
318
digitalWrite( 2, HIGH );
320
// set up output pins (4 to 13) for the led array
321
for( int a = 4; a < 14; a++ )
322
pinMode( a, OUTPUT );
324
// set up mode-switch button on pin 3
326
digitalWrite( 3, HIGH );
328
// get the time from the real-time clock
330
RTC.get( rtc_data, true );
331
time_hours = rtc_data[ DS1307_HR ];
332
time_minutes = rtc_data[ DS1307_MIN ];
333
time_seconds = rtc_data[ DS1307_SEC ];
336
Serial.begin( 9600 );
343
// if there has been a new pulse, we'll be resetting the display
344
bool reset = new_pulse_at? true : false;
346
// only do this stuff at the start of a display cycle, to ensure
347
// that no state changes mid-display
353
// keep track of time
358
drawNextSegment( reset );
360
// do we need to recalculate segment times?
362
calculateSegmentTimes();
364
// wait till it's time to draw the next segment
365
waitTillNextSegment( reset );