/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.ino

  • Committer: edam
  • Date: 2012-02-23 00:26:32 UTC
  • Revision ID: edam@waxworlds.org-20120223002632-kkwrdwijfmv45f0j
conrtol segment number from one place and reverse the order the segments are drawn (backwards clock!)

Show diffs side-by-side

added added

removed removed

Lines of Context:
28
28
 
29
29
 * a PC fan is wired up to a 12V power supply
30
30
 
31
 
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
32
 
   Arduino.
 
31
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
 
32
   arduino.
33
33
 
34
 
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
   13 is at the outside.
37
37
 
38
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on and off in unison in the centre of the clock.
 
40
   LEDs that turn on anf off in unison in the centre of the clock.
41
41
 
42
42
 * a button should be attached to pin 3 that grounds it when pressed.
43
43
 
44
 
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
45
45
 
46
46
Implementation details:
47
47
 
50
50
 * the timing of the drawing of the clock face is recalculated with
51
51
   every rotation of the propeller.
52
52
    
53
 
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
   software skips every other one. This means that the clock may
55
55
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to discover the position that
 
56
   position. You will need to experiment to dicsover the position that
57
57
   the propeller must be in when starting the clock.
58
58
    
59
59
Usage instructions:
75
75
 
76
76
******************************************************************************/
77
77
 
78
 
#include "config.h"
79
 
#include "button.h"
80
 
#include "time.h"
81
 
#include "Arduino.h"
82
 
#include "analogue_clock.h"
83
 
#include "digital_clock.h"
84
 
#include "test_pattern.h"
 
78
 
 
79
#include <Bounce.h>
 
80
#include <DS1307.h>
 
81
#include <Wire.h>
85
82
 
86
83
//_____________________________________________________________________________
87
84
//                                                                         data
88
85
 
 
86
 
89
87
// when non-zero, the time (in microseconds) of a new fan pulse that
90
88
// has just occurred, which means that segment drawing needs to be
91
89
// restarted
92
 
static unsigned long _new_pulse_at = 0;
 
90
static unsigned long new_pulse_at = 0;
93
91
 
94
92
// the time (in microseconds) when the last fan pulse occurred
95
 
static unsigned long _last_pulse_at = 0;
 
93
static unsigned long last_pulse_at = 0;
96
94
 
97
95
// duration (in microseconds) that a segment should be displayed
98
 
static unsigned long _segment_step = 0;
 
96
static unsigned long segment_step = 0;
99
97
 
100
98
// remainder after divisor and a tally of the remainders for each segment
101
 
static unsigned long _segment_step_sub_step = 0;
102
 
static unsigned long _segment_step_sub = 0;
103
 
 
104
 
// the button
105
 
static Button _button( 3 );
106
 
 
107
 
// modes
108
 
static int _major_mode = 0;
109
 
static int _minor_mode = 0;
110
 
 
111
 
#define MAIN_MODE_IDX 0
112
 
 
113
 
#define ANALOGUE_CLOCK_IDX 0
114
 
#define DIGITAL_CLOCK_IDX 1
115
 
#define TEST_PATTERN_IDX 2
 
99
static unsigned long segment_step_sub_step = 0;
 
100
static unsigned long segment_step_sub = 0;
 
101
 
 
102
// flag to indicate that the drawing mode should be cycled to the next one
 
103
static bool inc_draw_mode = false;
 
104
 
 
105
// a bounce-managed button
 
106
static Bounce button( 3, 50 );
 
107
 
 
108
// the time
 
109
static int time_hours = 0;
 
110
static int time_minutes = 0;
 
111
static int time_seconds = 0;
 
112
 
 
113
// number of segments in a full display (rotation) is 60 (one per
 
114
// second) times the desired number of sub-divisions of a second
 
115
#define NUM_SECOND_SEGMENTS 5
 
116
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
117
 
 
118
// clock direction
 
119
#define CLOCK_FORWARD 0
116
120
 
117
121
//_____________________________________________________________________________
118
122
//                                                                         code
119
123
 
120
124
 
121
 
// activate the current minor mode
122
 
void activate_minor_mode()
 
125
// check for button presses
 
126
void checkButtons()
123
127
{
124
 
        switch( _minor_mode ) {
125
 
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
126
 
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
127
 
        }
 
128
        // update buttons
 
129
        button.update();
 
130
 
 
131
        // notice button presses
 
132
        if( button.risingEdge() )
 
133
                inc_draw_mode = true;
128
134
}
129
135
 
130
 
// perform button events
131
 
void do_button_events()
 
136
 
 
137
// keep track of time
 
138
void trackTime()
132
139
{
133
 
        // loop through pending events
134
 
        while( int event = _button.get_event() )
135
 
        {
136
 
                switch( event )
137
 
                {
138
 
                case 1:
139
 
                        // short press
140
 
                        switch( _major_mode ) {
141
 
                        case MAIN_MODE_IDX:
142
 
                                switch( _minor_mode ) {
143
 
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
144
 
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
145
 
                                }
146
 
                                break;
147
 
                        }
148
 
                        break;
149
 
 
150
 
                case 2:
151
 
                        // long press
152
 
                        switch( _major_mode ) {
153
 
                        case MAIN_MODE_IDX:
154
 
                                if( ++_minor_mode >= 3 )
155
 
                                        _minor_mode = 0;
156
 
                                switch( _minor_mode ) {
157
 
                                case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
158
 
                                }
159
 
                                break;
160
 
                        }
161
 
                        break;
162
 
 
163
 
                case 3:
164
 
                        // looooong press (change major mode)
165
 
                        if( ++_major_mode > 0 )
166
 
                                _major_mode = 0;
167
 
                        switch( _major_mode ) {
168
 
                        case MAIN_MODE_IDX: _minor_mode = 0; break;
169
 
                        }
170
 
                        activate_minor_mode();
171
 
                        break;
 
140
        // previous time and any carried-over milliseconds
 
141
        static unsigned long last_time = millis();
 
142
        static unsigned long carry = 0;
 
143
 
 
144
        // how many milliseonds have elapsed since we last checked?
 
145
        unsigned long next_time = millis();
 
146
        unsigned long delta = next_time - last_time + carry;
 
147
 
 
148
        // update the previous time and carried-over milliseconds
 
149
        last_time = next_time;
 
150
        carry = delta % 1000;
 
151
 
 
152
        // add the seconds that have passed to the time
 
153
        time_seconds += delta / 1000;
 
154
        while( time_seconds >= 60 ) {
 
155
                time_seconds -= 60;
 
156
                time_minutes++;
 
157
                if( time_minutes >= 60 ) {
 
158
                        time_minutes -= 60;
 
159
                        time_hours++;
 
160
                        if( time_hours >= 24 )
 
161
                                time_hours -= 24;
172
162
                }
173
163
        }
174
164
}
175
165
 
176
166
 
 
167
// turn an led on/off
 
168
void ledOn( int num, bool on )
 
169
{
 
170
        if( num < 0 || num > 9 ) return;
 
171
 
 
172
        // convert to pin no.
 
173
        num += 4;
 
174
 
 
175
        // pin 4 needs to be inverted (it's driving a PNP)
 
176
        // NOTE: PIN 4 TEMPORARILY DISABLED
 
177
//      if( num == 4 ) on = true;
 
178
if( num == 4 ) on = !on;
 
179
 
 
180
        digitalWrite( num, on? HIGH : LOW );
 
181
}
 
182
 
 
183
 
 
184
// draw a segment for the test display
 
185
void drawNextSegment_test( int segment )
 
186
{
 
187
        // turn on inside and outside LEDs
 
188
        ledOn( 9, true );
 
189
 
 
190
        // display segment number in binary across in the inside LEDs,
 
191
        // with the LED on pin 12 showing the least-significant bit
 
192
        for( int a = 0; a < 9; a++ )
 
193
                ledOn( 8 - a, ( segment >> a ) & 1 );
 
194
}
 
195
 
 
196
 
 
197
// draw a segment for the time display
 
198
void drawNextSegment_time( int segment )
 
199
{
 
200
        int second = segment / NUM_SECOND_SEGMENTS;
 
201
        int second_segment = segment % NUM_SECOND_SEGMENTS;
 
202
 
 
203
        // what needs to be drawn?
 
204
        bool draw_tick = !second_segment && second % 5 == 0;
 
205
        bool draw_second = !second_segment && second == time_seconds;
 
206
        bool draw_minute = !second_segment && second == time_minutes;
 
207
        bool draw_hour = !second_segment && second == time_hours;
 
208
 
 
209
        // set the LEDs
 
210
        ledOn( 9, true );
 
211
        ledOn( 8, draw_tick || draw_minute );
 
212
        for( int a = 6; a <= 7; a++ )
 
213
                ledOn( a, draw_minute || draw_second );
 
214
        for( int a = 0; a <= 5; a++ )
 
215
                ledOn( a, draw_minute || draw_second || draw_hour );
 
216
}
 
217
 
 
218
 
177
219
// draw a display segment
178
 
void draw_next_segment( bool reset )
 
220
void drawNextSegment( bool reset )
179
221
{
 
222
        static int draw_mode = 0;
 
223
 
180
224
        // keep track of segment
181
225
#if CLOCK_FORWARD
182
 
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
183
 
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
226
        static int segment = 0;
 
227
        if( reset ) segment = 0;
184
228
#else
185
 
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
186
 
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
229
        static int segment = NUM_SEGMENTS - 1;
 
230
        if( reset ) segment = NUM_SEGMENTS - 1;
187
231
#endif
188
232
 
189
 
        // frame reset
190
 
        if( reset ) {
191
 
                switch( _major_mode ) {
192
 
                case MAIN_MODE_IDX:
193
 
                        switch( _minor_mode ) {
194
 
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
195
 
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
196
 
                        }
197
 
                        break;
198
 
                }
 
233
        // handle mode switch requests
 
234
        if( reset && inc_draw_mode ) {
 
235
                inc_draw_mode = false;
 
236
                draw_mode++;
 
237
                if( draw_mode >= 2 )
 
238
                        draw_mode = 0;
199
239
        }
200
240
 
201
 
        // draw
202
 
        switch( _major_mode ) {
203
 
        case MAIN_MODE_IDX:
204
 
                switch( _minor_mode ) {
205
 
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
206
 
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
207
 
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
208
 
                }
209
 
                break;
 
241
        // draw the segment
 
242
        switch( draw_mode ) {
 
243
        case 0: drawNextSegment_test( segment ); break;
 
244
        case 1: drawNextSegment_time( segment ); break;
210
245
        }
211
246
 
212
247
#if CLOCK_FORWARD
213
 
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
248
        segment++;
214
249
#else
215
 
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
250
        segment--;
216
251
#endif
217
252
}
218
253
 
219
254
 
220
255
// calculate time constants when a new pulse has occurred
221
 
void calculate_segment_times()
 
256
void calculateSegmentTimes()
222
257
{
223
258
        // check for overflows, and only recalculate times if there isn't
224
259
        // one (if there is, we'll just go with the last pulse's times)
225
 
        if( _new_pulse_at > _last_pulse_at )
 
260
        if( new_pulse_at > last_pulse_at )
226
261
        {
227
262
                // new segment stepping times
228
 
                unsigned long delta = _new_pulse_at - _last_pulse_at;
229
 
                _segment_step = delta / NUM_SEGMENTS;
230
 
                _segment_step_sub = 0;
231
 
                _segment_step_sub_step = delta % NUM_SEGMENTS;
 
263
                unsigned long delta = new_pulse_at - last_pulse_at;
 
264
                segment_step = delta / NUM_SEGMENTS;
 
265
                segment_step_sub = 0;
 
266
                segment_step_sub_step = delta % NUM_SEGMENTS;
232
267
        }
233
268
 
234
269
        // now we have dealt with this pulse, save the pulse time and
235
270
        // clear new_pulse_at, ready for the next pulse
236
 
        _last_pulse_at = _new_pulse_at;
237
 
        _new_pulse_at = 0;
 
271
        last_pulse_at = new_pulse_at;
 
272
        new_pulse_at = 0;
238
273
}
239
274
 
240
275
 
241
276
// wait until it is time to draw the next segment or a new pulse has
242
277
// occurred
243
 
void wait_till_end_of_segment( bool reset )
 
278
void waitTillNextSegment( bool reset )
244
279
{
245
280
        static unsigned long end_time = 0;
246
281
 
247
282
        // handle reset
248
283
        if( reset )
249
 
                end_time = _last_pulse_at;
 
284
                end_time = last_pulse_at;
250
285
 
251
286
        // work out the time that this segment should be displayed until
252
 
        end_time += _segment_step;
253
 
        _segment_step_sub += _segment_step_sub_step;
254
 
        if( _segment_step_sub >= NUM_SEGMENTS ) {
255
 
                _segment_step_sub -= NUM_SEGMENTS;
 
287
        end_time += segment_step;
 
288
        segment_step_sub += segment_step_sub_step;
 
289
        if( segment_step_sub >= NUM_SEGMENTS ) {
 
290
                segment_step_sub -= NUM_SEGMENTS;
256
291
                end_time++;
257
292
        }
258
293
 
259
294
        // wait
260
 
        while( micros() < end_time && !_new_pulse_at );
 
295
        while( micros() < end_time && !new_pulse_at );
261
296
}
262
297
 
263
298
 
264
299
// ISR to handle the pulses from the fan's tachiometer
265
 
void fan_pulse_handler()
 
300
void fanPulseHandler()
266
301
{
267
302
        // the fan actually sends two pulses per revolution. These pulses
268
303
        // may not be exactly evenly distributed around the rotation, so
273
308
        if( !ignore )
274
309
        {
275
310
                // set a new pulse time
276
 
                _new_pulse_at = micros();
 
311
                new_pulse_at = micros();
277
312
        }
278
313
}
279
314
 
282
317
void setup()
283
318
{
284
319
        // set up an interrupt handler on pin 2 to nitice fan pulses
285
 
        attachInterrupt( 0, fan_pulse_handler, RISING );
 
320
        attachInterrupt( 0, fanPulseHandler, RISING );
286
321
        digitalWrite( 2, HIGH );
287
322
  
288
323
        // set up output pins (4 to 13) for the led array
292
327
        // set up mode-switch button on pin 3
293
328
        pinMode( 3, INPUT );
294
329
        digitalWrite( 3, HIGH );
295
 
        static int event_times[] = { 5, 500, 4000, 0 };
296
 
        _button.set_event_times( event_times );
297
 
 
298
 
        // initialise RTC
299
 
        Time::init();
300
 
 
301
 
        // activate the minor mode
302
 
        switch( _major_mode ) {
303
 
        case MAIN_MODE_IDX: activate_minor_mode(); break;
304
 
        }
 
330
 
 
331
        // get the time from the real-time clock
 
332
        int rtc_data[ 7 ];
 
333
        RTC.get( rtc_data, true );
 
334
        time_hours = rtc_data[ DS1307_HR ];
 
335
        time_minutes = rtc_data[ DS1307_MIN ];
 
336
        time_seconds = rtc_data[ DS1307_SEC ];
 
337
 
 
338
        // serial comms
 
339
        Serial.begin( 9600 );
305
340
}
306
341
 
307
342
 
309
344
void loop()
310
345
{
311
346
        // if there has been a new pulse, we'll be resetting the display
312
 
        bool reset = _new_pulse_at? true : false;
313
 
 
314
 
        // update button
315
 
        _button.update();
 
347
        bool reset = new_pulse_at? true : false;
316
348
 
317
349
        // only do this stuff at the start of a display cycle, to ensure
318
350
        // that no state changes mid-display
319
351
        if( reset )
320
352
        {
321
 
                // calculate segment times
322
 
                calculate_segment_times();
 
353
                // check buttons
 
354
                checkButtons();
323
355
 
324
356
                // keep track of time
325
 
                Time::update();
326
 
 
327
 
                // perform button events
328
 
                do_button_events();
 
357
                trackTime();
329
358
        }
330
359
 
331
360
        // draw this segment
332
 
        draw_next_segment( reset );
 
361
        drawNextSegment( reset );
 
362
 
 
363
        // do we need to recalculate segment times?
 
364
        if( reset )
 
365
                calculateSegmentTimes();
333
366
 
334
367
        // wait till it's time to draw the next segment
335
 
        wait_till_end_of_segment( reset );
 
368
        waitTillNextSegment( reset );
336
369
}