76
76
******************************************************************************/
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
86
83
//_____________________________________________________________________________
89
87
// when non-zero, the time (in microseconds) of a new fan pulse that
90
88
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
90
static unsigned long new_pulse_at = 0;
94
92
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
93
static unsigned long last_pulse_at = 0;
97
95
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
96
static unsigned long segment_step = 0;
100
98
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
99
static unsigned long segment_step_sub_step = 0;
100
static unsigned long segment_step_sub = 0;
102
// flag to indicate that the drawing mode should be cycled to the next one
103
static bool inc_draw_mode = false;
105
// a bounce-managed button
106
static Bounce button( 3, 50 );
109
static int time_hours = 0;
110
static int time_minutes = 0;
111
static int time_seconds = 0;
113
// number of segments in a full display (rotation) is 60 (one per
114
// second) times the desired number of sub-divisions of a second
115
#define NUM_SECOND_SEGMENTS 5
116
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
119
#define CLOCK_FORWARD 0
117
121
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
125
// check for button presses
124
switch( _minor_mode ) {
125
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
126
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
131
// notice button presses
132
if( button.risingEdge() )
133
inc_draw_mode = true;
130
// perform button events
131
void do_button_events()
137
// keep track of time
133
// loop through pending events
134
while( int event = _button.get_event() )
140
switch( _major_mode ) {
142
switch( _minor_mode ) {
143
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
144
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
152
switch( _major_mode ) {
154
if( ++_minor_mode >= 3 )
156
switch( _minor_mode ) {
157
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
164
// looooong press (change major mode)
165
if( ++_major_mode > 0 )
167
switch( _major_mode ) {
168
case MAIN_MODE_IDX: _minor_mode = 0; break;
170
activate_minor_mode();
140
// previous time and any carried-over milliseconds
141
static unsigned long last_time = millis();
142
static unsigned long carry = 0;
144
// how many milliseonds have elapsed since we last checked?
145
unsigned long next_time = millis();
146
unsigned long delta = next_time - last_time + carry;
148
// update the previous time and carried-over milliseconds
149
last_time = next_time;
150
carry = delta % 1000;
152
// add the seconds that have passed to the time
153
time_seconds += delta / 1000;
154
while( time_seconds >= 60 ) {
157
if( time_minutes >= 60 ) {
160
if( time_hours >= 24 )
167
// turn an led on/off
168
void ledOn( int num, bool on )
170
if( num < 0 || num > 9 ) return;
172
// convert to pin no.
175
// pin 4 needs to be inverted (it's driving a PNP)
176
// NOTE: PIN 4 TEMPORARILY DISABLED
177
// if( num == 4 ) on = true;
178
if( num == 4 ) on = !on;
180
digitalWrite( num, on? HIGH : LOW );
184
// draw a segment for the test display
185
void drawNextSegment_test( int segment )
187
// turn on inside and outside LEDs
190
// display segment number in binary across in the inside LEDs,
191
// with the LED on pin 12 showing the least-significant bit
192
for( int a = 0; a < 9; a++ )
193
ledOn( 8 - a, ( segment >> a ) & 1 );
197
// draw a segment for the time display
198
void drawNextSegment_time( int segment )
200
int second = segment / NUM_SECOND_SEGMENTS;
201
int second_segment = segment % NUM_SECOND_SEGMENTS;
203
// what needs to be drawn?
204
bool draw_tick = !second_segment && second % 5 == 0;
205
bool draw_second = !second_segment && second == time_seconds;
206
bool draw_minute = !second_segment && second == time_minutes;
207
bool draw_hour = !second_segment && second == time_hours;
211
ledOn( 8, draw_tick || draw_minute );
212
for( int a = 6; a <= 7; a++ )
213
ledOn( a, draw_minute || draw_second );
214
for( int a = 0; a <= 5; a++ )
215
ledOn( a, draw_minute || draw_second || draw_hour );
177
219
// draw a display segment
178
void draw_next_segment( bool reset )
220
void drawNextSegment( bool reset )
222
static int draw_mode = 0;
180
224
// keep track of segment
181
225
#if CLOCK_FORWARD
182
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
183
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
226
static int segment = 0;
227
if( reset ) segment = 0;
185
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
186
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
229
static int segment = NUM_SEGMENTS - 1;
230
if( reset ) segment = NUM_SEGMENTS - 1;
191
switch( _major_mode ) {
193
switch( _minor_mode ) {
194
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
195
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
233
// handle mode switch requests
234
if( reset && inc_draw_mode ) {
235
inc_draw_mode = false;
202
switch( _major_mode ) {
204
switch( _minor_mode ) {
205
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
206
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
207
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
242
switch( draw_mode ) {
243
case 0: drawNextSegment_test( segment ); break;
244
case 1: drawNextSegment_time( segment ); break;
212
247
#if CLOCK_FORWARD
213
if( ++segment >= NUM_SEGMENTS ) segment = 0;
215
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
220
255
// calculate time constants when a new pulse has occurred
221
void calculate_segment_times()
256
void calculateSegmentTimes()
223
258
// check for overflows, and only recalculate times if there isn't
224
259
// one (if there is, we'll just go with the last pulse's times)
225
if( _new_pulse_at > _last_pulse_at )
260
if( new_pulse_at > last_pulse_at )
227
262
// new segment stepping times
228
unsigned long delta = _new_pulse_at - _last_pulse_at;
229
_segment_step = delta / NUM_SEGMENTS;
230
_segment_step_sub = 0;
231
_segment_step_sub_step = delta % NUM_SEGMENTS;
263
unsigned long delta = new_pulse_at - last_pulse_at;
264
segment_step = delta / NUM_SEGMENTS;
265
segment_step_sub = 0;
266
segment_step_sub_step = delta % NUM_SEGMENTS;
234
269
// now we have dealt with this pulse, save the pulse time and
235
270
// clear new_pulse_at, ready for the next pulse
236
_last_pulse_at = _new_pulse_at;
271
last_pulse_at = new_pulse_at;
241
276
// wait until it is time to draw the next segment or a new pulse has
243
void wait_till_end_of_segment( bool reset )
278
void waitTillNextSegment( bool reset )
245
280
static unsigned long end_time = 0;
249
end_time = _last_pulse_at;
284
end_time = last_pulse_at;
251
286
// work out the time that this segment should be displayed until
252
end_time += _segment_step;
253
_segment_step_sub += _segment_step_sub_step;
254
if( _segment_step_sub >= NUM_SEGMENTS ) {
255
_segment_step_sub -= NUM_SEGMENTS;
287
end_time += segment_step;
288
segment_step_sub += segment_step_sub_step;
289
if( segment_step_sub >= NUM_SEGMENTS ) {
290
segment_step_sub -= NUM_SEGMENTS;
260
while( micros() < end_time && !_new_pulse_at );
295
while( micros() < end_time && !new_pulse_at );
264
299
// ISR to handle the pulses from the fan's tachiometer
265
void fan_pulse_handler()
300
void fanPulseHandler()
267
302
// the fan actually sends two pulses per revolution. These pulses
268
303
// may not be exactly evenly distributed around the rotation, so