/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.ino

  • Committer: edam
  • Date: 2012-02-23 00:26:32 UTC
  • Revision ID: edam@waxworlds.org-20120223002632-kkwrdwijfmv45f0j
conrtol segment number from one place and reverse the order the segments are drawn (backwards clock!)

Show diffs side-by-side

added added

removed removed

Lines of Context:
28
28
 
29
29
 * a PC fan is wired up to a 12V power supply
30
30
 
31
 
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
32
 
   Arduino.
 
31
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
 
32
   arduino.
33
33
 
34
 
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
   13 is at the outside.
37
37
 
38
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on and off in unison in the centre of the clock.
 
40
   LEDs that turn on anf off in unison in the centre of the clock.
41
41
 
42
42
 * a button should be attached to pin 3 that grounds it when pressed.
43
43
 
44
 
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
45
45
 
46
46
Implementation details:
47
47
 
50
50
 * the timing of the drawing of the clock face is recalculated with
51
51
   every rotation of the propeller.
52
52
    
53
 
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
   software skips every other one. This means that the clock may
55
55
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to discover the position that
 
56
   position. You will need to experiment to dicsover the position that
57
57
   the propeller must be in when starting the clock.
58
58
    
59
59
Usage instructions:
75
75
 
76
76
******************************************************************************/
77
77
 
78
 
#include "config.h"
79
 
#include "button.h"
80
 
#include "time.h"
81
 
#include "Arduino.h"
82
 
#include "analogue_clock.h"
83
 
#include "digital_clock.h"
84
 
#include "test_pattern.h"
85
 
#include "settings_mode.h"
86
 
#include "text.h"
87
 
#include "text_renderer.h"
88
 
#include "common.h"
 
78
 
 
79
#include <Bounce.h>
 
80
#include <DS1307.h>
 
81
#include <Wire.h>
89
82
 
90
83
//_____________________________________________________________________________
91
84
//                                                                         data
92
85
 
 
86
 
93
87
// when non-zero, the time (in microseconds) of a new fan pulse that
94
88
// has just occurred, which means that segment drawing needs to be
95
89
// restarted
96
 
static unsigned long _new_pulse_at = 0;
 
90
static unsigned long new_pulse_at = 0;
97
91
 
98
92
// the time (in microseconds) when the last fan pulse occurred
99
 
static unsigned long _last_pulse_at = 0;
 
93
static unsigned long last_pulse_at = 0;
100
94
 
101
95
// duration (in microseconds) that a segment should be displayed
102
 
static unsigned long _segment_step = 0;
 
96
static unsigned long segment_step = 0;
103
97
 
104
98
// remainder after divisor and a tally of the remainders for each segment
105
 
static unsigned long _segment_step_sub_step = 0;
106
 
static unsigned long _segment_step_sub = 0;
107
 
 
108
 
// the button
109
 
static Button _button( 3 );
110
 
 
111
 
// modes
112
 
static int _major_mode = 0;
113
 
static int _minor_mode = 0;
114
 
 
115
 
#define MAIN_MODE_IDX 1
116
 
#define SETTINGS_MODE_IDX 0
117
 
 
118
 
#define ANALOGUE_CLOCK_IDX 0
119
 
#define DIGITAL_CLOCK_IDX 1
120
 
#define TEST_PATTERN_IDX 2
 
99
static unsigned long segment_step_sub_step = 0;
 
100
static unsigned long segment_step_sub = 0;
 
101
 
 
102
// flag to indicate that the drawing mode should be cycled to the next one
 
103
static bool inc_draw_mode = false;
 
104
 
 
105
// a bounce-managed button
 
106
static Bounce button( 3, 50 );
 
107
 
 
108
// the time
 
109
static int time_hours = 0;
 
110
static int time_minutes = 0;
 
111
static int time_seconds = 0;
 
112
 
 
113
// number of segments in a full display (rotation) is 60 (one per
 
114
// second) times the desired number of sub-divisions of a second
 
115
#define NUM_SECOND_SEGMENTS 5
 
116
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
117
 
 
118
// clock direction
 
119
#define CLOCK_FORWARD 0
121
120
 
122
121
//_____________________________________________________________________________
123
122
//                                                                         code
124
123
 
125
124
 
126
 
// activate the current minor mode
127
 
void activate_minor_mode()
128
 
{
129
 
        // reset text
130
 
        Text::reset();
131
 
        leds_off();
132
 
 
133
 
        // give the mode a chance to init
134
 
        switch( _minor_mode ) {
135
 
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
136
 
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
137
 
        }
138
 
}
139
 
 
140
 
 
141
 
// activate major mode
142
 
void activate_major_mode()
143
 
{
144
 
        // reset text
145
 
        Text::reset();
146
 
        leds_off();
147
 
 
148
 
        // give the mode a chance to init
149
 
        switch( _major_mode ) {
150
 
        case MAIN_MODE_IDX: activate_minor_mode(); break;
151
 
        case SETTINGS_MODE_IDX: settings_mode_activate(); break;
152
 
        }
153
 
}
154
 
 
155
 
 
156
 
// perform button events
157
 
void do_button_events()
158
 
{
159
 
        // loop through pending events
160
 
        while( int event = _button.get_event() )
161
 
        {
162
 
                switch( event )
163
 
                {
164
 
                case 1:
165
 
                        // short press
166
 
                        switch( _major_mode ) {
167
 
                        case MAIN_MODE_IDX:
168
 
                                switch( _minor_mode ) {
169
 
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
170
 
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
171
 
                                }
172
 
                                break;
173
 
                        case SETTINGS_MODE_IDX: settings_mode_press(); break;
174
 
                        }
175
 
                        break;
176
 
 
177
 
                case 2:
178
 
                        // long press
179
 
                        switch( _major_mode ) {
180
 
                        case MAIN_MODE_IDX:
181
 
                                if( ++_minor_mode >= 3 )
182
 
                                        _minor_mode = 0;
183
 
                                activate_minor_mode();
184
 
                                break;
185
 
                        case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
186
 
                        }
187
 
                        break;
188
 
 
189
 
                case 3:
190
 
                        // looooong press (change major mode)
191
 
                        if( ++_major_mode > 1 )
192
 
                                _major_mode = 0;
193
 
                        activate_major_mode();
194
 
                        break;
 
125
// check for button presses
 
126
void checkButtons()
 
127
{
 
128
        // update buttons
 
129
        button.update();
 
130
 
 
131
        // notice button presses
 
132
        if( button.risingEdge() )
 
133
                inc_draw_mode = true;
 
134
}
 
135
 
 
136
 
 
137
// keep track of time
 
138
void trackTime()
 
139
{
 
140
        // previous time and any carried-over milliseconds
 
141
        static unsigned long last_time = millis();
 
142
        static unsigned long carry = 0;
 
143
 
 
144
        // how many milliseonds have elapsed since we last checked?
 
145
        unsigned long next_time = millis();
 
146
        unsigned long delta = next_time - last_time + carry;
 
147
 
 
148
        // update the previous time and carried-over milliseconds
 
149
        last_time = next_time;
 
150
        carry = delta % 1000;
 
151
 
 
152
        // add the seconds that have passed to the time
 
153
        time_seconds += delta / 1000;
 
154
        while( time_seconds >= 60 ) {
 
155
                time_seconds -= 60;
 
156
                time_minutes++;
 
157
                if( time_minutes >= 60 ) {
 
158
                        time_minutes -= 60;
 
159
                        time_hours++;
 
160
                        if( time_hours >= 24 )
 
161
                                time_hours -= 24;
195
162
                }
196
163
        }
197
164
}
198
165
 
199
166
 
 
167
// turn an led on/off
 
168
void ledOn( int num, bool on )
 
169
{
 
170
        if( num < 0 || num > 9 ) return;
 
171
 
 
172
        // convert to pin no.
 
173
        num += 4;
 
174
 
 
175
        // pin 4 needs to be inverted (it's driving a PNP)
 
176
        // NOTE: PIN 4 TEMPORARILY DISABLED
 
177
//      if( num == 4 ) on = true;
 
178
if( num == 4 ) on = !on;
 
179
 
 
180
        digitalWrite( num, on? HIGH : LOW );
 
181
}
 
182
 
 
183
 
 
184
// draw a segment for the test display
 
185
void drawNextSegment_test( int segment )
 
186
{
 
187
        // turn on inside and outside LEDs
 
188
        ledOn( 9, true );
 
189
 
 
190
        // display segment number in binary across in the inside LEDs,
 
191
        // with the LED on pin 12 showing the least-significant bit
 
192
        for( int a = 0; a < 9; a++ )
 
193
                ledOn( 8 - a, ( segment >> a ) & 1 );
 
194
}
 
195
 
 
196
 
 
197
// draw a segment for the time display
 
198
void drawNextSegment_time( int segment )
 
199
{
 
200
        int second = segment / NUM_SECOND_SEGMENTS;
 
201
        int second_segment = segment % NUM_SECOND_SEGMENTS;
 
202
 
 
203
        // what needs to be drawn?
 
204
        bool draw_tick = !second_segment && second % 5 == 0;
 
205
        bool draw_second = !second_segment && second == time_seconds;
 
206
        bool draw_minute = !second_segment && second == time_minutes;
 
207
        bool draw_hour = !second_segment && second == time_hours;
 
208
 
 
209
        // set the LEDs
 
210
        ledOn( 9, true );
 
211
        ledOn( 8, draw_tick || draw_minute );
 
212
        for( int a = 6; a <= 7; a++ )
 
213
                ledOn( a, draw_minute || draw_second );
 
214
        for( int a = 0; a <= 5; a++ )
 
215
                ledOn( a, draw_minute || draw_second || draw_hour );
 
216
}
 
217
 
 
218
 
200
219
// draw a display segment
201
 
void draw_next_segment( bool reset )
 
220
void drawNextSegment( bool reset )
202
221
{
 
222
        static int draw_mode = 0;
 
223
 
203
224
        // keep track of segment
204
225
#if CLOCK_FORWARD
205
 
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
206
 
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
226
        static int segment = 0;
 
227
        if( reset ) segment = 0;
207
228
#else
208
 
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
209
 
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
229
        static int segment = NUM_SEGMENTS - 1;
 
230
        if( reset ) segment = NUM_SEGMENTS - 1;
210
231
#endif
211
232
 
212
 
        // reset the text renderer
213
 
        TextRenderer::reset_buffer();
214
 
 
215
 
        // frame reset
216
 
        if( reset ) {
217
 
                switch( _major_mode ) {
218
 
                case MAIN_MODE_IDX:
219
 
                        switch( _minor_mode ) {
220
 
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
221
 
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
222
 
                        }
223
 
                        break;
224
 
                case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
225
 
                }
226
 
 
227
 
                // tell the text services we're starting a new frame
228
 
                Text::draw_reset();
229
 
        }
230
 
 
231
 
        // draw
232
 
        switch( _major_mode ) {
233
 
        case MAIN_MODE_IDX:
234
 
                switch( _minor_mode ) {
235
 
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
236
 
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
237
 
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
238
 
                }
239
 
                break;
240
 
        case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
241
 
        }
242
 
 
243
 
        // draw any text that was rendered
244
 
        TextRenderer::output_buffer();
 
233
        // handle mode switch requests
 
234
        if( reset && inc_draw_mode ) {
 
235
                inc_draw_mode = false;
 
236
                draw_mode++;
 
237
                if( draw_mode >= 2 )
 
238
                        draw_mode = 0;
 
239
        }
 
240
 
 
241
        // draw the segment
 
242
        switch( draw_mode ) {
 
243
        case 0: drawNextSegment_test( segment ); break;
 
244
        case 1: drawNextSegment_time( segment ); break;
 
245
        }
245
246
 
246
247
#if CLOCK_FORWARD
247
 
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
248
        segment++;
248
249
#else
249
 
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
250
        segment--;
250
251
#endif
251
252
}
252
253
 
253
254
 
254
255
// calculate time constants when a new pulse has occurred
255
 
void calculate_segment_times()
 
256
void calculateSegmentTimes()
256
257
{
257
258
        // check for overflows, and only recalculate times if there isn't
258
259
        // one (if there is, we'll just go with the last pulse's times)
259
 
        if( _new_pulse_at > _last_pulse_at )
 
260
        if( new_pulse_at > last_pulse_at )
260
261
        {
261
262
                // new segment stepping times
262
 
                unsigned long delta = _new_pulse_at - _last_pulse_at;
263
 
                _segment_step = delta / NUM_SEGMENTS;
264
 
                _segment_step_sub = 0;
265
 
                _segment_step_sub_step = delta % NUM_SEGMENTS;
 
263
                unsigned long delta = new_pulse_at - last_pulse_at;
 
264
                segment_step = delta / NUM_SEGMENTS;
 
265
                segment_step_sub = 0;
 
266
                segment_step_sub_step = delta % NUM_SEGMENTS;
266
267
        }
267
268
 
268
269
        // now we have dealt with this pulse, save the pulse time and
269
270
        // clear new_pulse_at, ready for the next pulse
270
 
        _last_pulse_at = _new_pulse_at;
271
 
        _new_pulse_at = 0;
 
271
        last_pulse_at = new_pulse_at;
 
272
        new_pulse_at = 0;
272
273
}
273
274
 
274
275
 
275
276
// wait until it is time to draw the next segment or a new pulse has
276
277
// occurred
277
 
void wait_till_end_of_segment( bool reset )
 
278
void waitTillNextSegment( bool reset )
278
279
{
279
280
        static unsigned long end_time = 0;
280
281
 
281
282
        // handle reset
282
283
        if( reset )
283
 
                end_time = _last_pulse_at;
 
284
                end_time = last_pulse_at;
284
285
 
285
286
        // work out the time that this segment should be displayed until
286
 
        end_time += _segment_step;
287
 
        _segment_step_sub += _segment_step_sub_step;
288
 
        if( _segment_step_sub >= NUM_SEGMENTS ) {
289
 
                _segment_step_sub -= NUM_SEGMENTS;
 
287
        end_time += segment_step;
 
288
        segment_step_sub += segment_step_sub_step;
 
289
        if( segment_step_sub >= NUM_SEGMENTS ) {
 
290
                segment_step_sub -= NUM_SEGMENTS;
290
291
                end_time++;
291
292
        }
292
293
 
293
294
        // wait
294
 
        while( micros() < end_time && !_new_pulse_at );
 
295
        while( micros() < end_time && !new_pulse_at );
295
296
}
296
297
 
297
298
 
298
299
// ISR to handle the pulses from the fan's tachiometer
299
 
void fan_pulse_handler()
 
300
void fanPulseHandler()
300
301
{
301
302
        // the fan actually sends two pulses per revolution. These pulses
302
303
        // may not be exactly evenly distributed around the rotation, so
307
308
        if( !ignore )
308
309
        {
309
310
                // set a new pulse time
310
 
                _new_pulse_at = micros();
 
311
                new_pulse_at = micros();
311
312
        }
312
313
}
313
314
 
316
317
void setup()
317
318
{
318
319
        // set up an interrupt handler on pin 2 to nitice fan pulses
319
 
        attachInterrupt( 0, fan_pulse_handler, RISING );
 
320
        attachInterrupt( 0, fanPulseHandler, RISING );
320
321
        digitalWrite( 2, HIGH );
321
322
  
322
323
        // set up output pins (4 to 13) for the led array
326
327
        // set up mode-switch button on pin 3
327
328
        pinMode( 3, INPUT );
328
329
        digitalWrite( 3, HIGH );
329
 
        static int event_times[] = { 5, 500, 4000, 0 };
330
 
        _button.set_event_times( event_times );
331
 
 
332
 
        // initialise RTC
333
 
        Time::init();
334
 
 
335
 
        // activate the minor mode
336
 
        activate_major_mode();
 
330
 
 
331
        // get the time from the real-time clock
 
332
        int rtc_data[ 7 ];
 
333
        RTC.get( rtc_data, true );
 
334
        time_hours = rtc_data[ DS1307_HR ];
 
335
        time_minutes = rtc_data[ DS1307_MIN ];
 
336
        time_seconds = rtc_data[ DS1307_SEC ];
 
337
 
 
338
        // serial comms
 
339
        Serial.begin( 9600 );
337
340
}
338
341
 
339
342
 
341
344
void loop()
342
345
{
343
346
        // if there has been a new pulse, we'll be resetting the display
344
 
        bool reset = _new_pulse_at? true : false;
345
 
 
346
 
        // update button
347
 
        _button.update();
 
347
        bool reset = new_pulse_at? true : false;
348
348
 
349
349
        // only do this stuff at the start of a display cycle, to ensure
350
350
        // that no state changes mid-display
351
351
        if( reset )
352
352
        {
353
 
                // calculate segment times
354
 
                calculate_segment_times();
 
353
                // check buttons
 
354
                checkButtons();
355
355
 
356
356
                // keep track of time
357
 
                Time::update();
358
 
 
359
 
                // perform button events
360
 
                do_button_events();
 
357
                trackTime();
361
358
        }
362
359
 
363
360
        // draw this segment
364
 
        draw_next_segment( reset );
 
361
        drawNextSegment( reset );
 
362
 
 
363
        // do we need to recalculate segment times?
 
364
        if( reset )
 
365
                calculateSegmentTimes();
365
366
 
366
367
        // wait till it's time to draw the next segment
367
 
        wait_till_end_of_segment( reset );
 
368
        waitTillNextSegment( reset );
368
369
}