76
76
******************************************************************************/
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
86
83
//_____________________________________________________________________________
89
87
// when non-zero, the time (in microseconds) of a new fan pulse that
90
88
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
90
static unsigned long new_pulse_at = 0;
94
92
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
93
static unsigned long last_pulse_at = 0;
97
95
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
96
static unsigned long segment_step = 0;
100
98
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
99
static unsigned long segment_step_sub_step = 0;
100
static unsigned long segment_step_sub = 0;
102
// flag to indicate that the drawing mode should be cycled to the next one
103
static bool inc_draw_mode = false;
105
// a bounce-managed button
106
static Bounce button( 3, 50 );
109
static int time_hours = 0;
110
static int time_minutes = 0;
111
static int time_seconds = 0;
113
// number of segments in a full display (rotation) is 60 (one per
114
// second) times the desired number of sub-divisions of a second
115
#define NUM_SECOND_SEGMENTS 5
116
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
118
// clock draw direction
119
#define CLOCK_FORWARD 0
121
// rotate display (in segments)
122
#define CLOCK_SHIFT ( 58 * NUM_SECOND_SEGMENTS - 1 )
117
124
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
128
// check for button presses
124
switch( _minor_mode ) {
125
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
134
// notice button presses
135
if( button.risingEdge() )
136
inc_draw_mode = true;
129
// perform button events
130
void do_button_events()
140
// keep track of time
132
// loop through pending events
133
while( int event = _button.get_event() )
139
switch( _major_mode ) {
141
switch( _minor_mode ) {
142
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
143
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
151
switch( _major_mode ) {
153
if( ++_minor_mode >= 3 )
155
switch( _minor_mode ) {
156
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
163
// looooong press (change major mode)
164
if( ++_major_mode > 0 )
166
switch( _major_mode ) {
167
case MAIN_MODE_IDX: _minor_mode = 0; break;
169
activate_minor_mode();
143
// previous time and any carried-over milliseconds
144
static unsigned long last_time = millis();
145
static unsigned long carry = 0;
147
// how many milliseonds have elapsed since we last checked?
148
unsigned long next_time = millis();
149
unsigned long delta = next_time - last_time + carry;
151
// update the previous time and carried-over milliseconds
152
last_time = next_time;
153
carry = delta % 1000;
155
// add the seconds that have passed to the time
156
time_seconds += delta / 1000;
157
while( time_seconds >= 60 ) {
160
if( time_minutes >= 60 ) {
163
if( time_hours >= 24 )
170
// turn an led on/off
171
void ledOn( int num, bool on )
173
if( num < 0 || num > 9 ) return;
175
// convert to pin no.
178
// pin 4 needs to be inverted (it's driving a PNP)
179
if( num == 4 ) on = !on;
181
digitalWrite( num, on? HIGH : LOW );
185
// draw a segment for the test display
186
void drawNextSegment_test( int segment )
188
// turn on outside LEDs
191
// display segment number in binary across in the inside LEDs,
192
// with the LED on pin 12 showing the least-significant bit
193
for( int a = 0; a < 9; a++ )
194
ledOn( 8 - a, ( segment >> a ) & 1 );
198
// draw a segment for the time display
199
void drawNextSegment_time( int segment )
201
int second = segment / NUM_SECOND_SEGMENTS;
202
int second_segment = segment % NUM_SECOND_SEGMENTS;
204
// what needs to be drawn?
205
bool draw_tick = ( !second_segment && second % 5 == 0 && second ) ||
206
( second == 0 && second_segment == 1 ) ||
207
( second == 59 && second_segment == NUM_SECOND_SEGMENTS - 1 );
208
bool draw_second = !second_segment && second == time_seconds;
209
bool draw_minute = !second_segment && second == time_minutes;
210
bool draw_hour = segment == time_hours * 5 * NUM_SECOND_SEGMENTS +
211
( 5 * NUM_SECOND_SEGMENTS * time_minutes / 60 );
215
ledOn( 8, draw_tick || draw_second );
216
for( int a = 6; a <= 7; a++ )
217
ledOn( a, draw_minute || draw_second );
218
for( int a = 0; a <= 5; a++ )
219
ledOn( a, draw_minute || draw_second || draw_hour );
176
223
// draw a display segment
177
void draw_next_segment( bool reset )
224
void drawNextSegment( bool reset )
226
static int draw_mode = 0;
179
228
// keep track of segment
180
229
#if CLOCK_FORWARD
181
230
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
207
259
// calculate time constants when a new pulse has occurred
208
void calculate_segment_times()
260
void calculateSegmentTimes()
210
262
// check for overflows, and only recalculate times if there isn't
211
263
// one (if there is, we'll just go with the last pulse's times)
212
if( _new_pulse_at > _last_pulse_at )
264
if( new_pulse_at > last_pulse_at )
214
266
// new segment stepping times
215
unsigned long delta = _new_pulse_at - _last_pulse_at;
216
_segment_step = delta / NUM_SEGMENTS;
217
_segment_step_sub = 0;
218
_segment_step_sub_step = delta % NUM_SEGMENTS;
267
unsigned long delta = new_pulse_at - last_pulse_at;
268
segment_step = delta / NUM_SEGMENTS;
269
segment_step_sub = 0;
270
segment_step_sub_step = delta % NUM_SEGMENTS;
221
273
// now we have dealt with this pulse, save the pulse time and
222
274
// clear new_pulse_at, ready for the next pulse
223
_last_pulse_at = _new_pulse_at;
275
last_pulse_at = new_pulse_at;
228
280
// wait until it is time to draw the next segment or a new pulse has
230
void wait_till_end_of_segment( bool reset )
282
void waitTillNextSegment( bool reset )
232
284
static unsigned long end_time = 0;
236
end_time = _last_pulse_at;
288
end_time = last_pulse_at;
238
290
// work out the time that this segment should be displayed until
239
end_time += _segment_step;
240
_segment_step_sub += _segment_step_sub_step;
241
if( _segment_step_sub >= NUM_SEGMENTS ) {
242
_segment_step_sub -= NUM_SEGMENTS;
291
end_time += segment_step;
292
segment_step_sub += segment_step_sub_step;
293
if( segment_step_sub >= NUM_SEGMENTS ) {
294
segment_step_sub -= NUM_SEGMENTS;
247
while( micros() < end_time && !_new_pulse_at );
299
while( micros() < end_time && !new_pulse_at );
251
303
// ISR to handle the pulses from the fan's tachiometer
252
void fan_pulse_handler()
304
void fanPulseHandler()
254
306
// the fan actually sends two pulses per revolution. These pulses
255
307
// may not be exactly evenly distributed around the rotation, so