/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.ino

  • Committer: edam
  • Date: 2012-02-25 01:29:52 UTC
  • Revision ID: tim@ed.am-20120225012952-32q8gg07aovk3qxh
updated arduino.mk

Show diffs side-by-side

added added

removed removed

28
28
 
29
29
 * a PC fan is wired up to a 12V power supply
30
30
 
31
 
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
32
 
   Arduino.
 
31
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
 
32
   arduino.
33
33
 
34
 
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
   13 is at the outside.
37
37
 
38
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on and off in unison in the centre of the clock.
 
40
   LEDs that turn on anf off in unison in the centre of the clock.
41
41
 
42
42
 * a button should be attached to pin 3 that grounds it when pressed.
43
43
 
44
 
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
45
45
 
46
46
Implementation details:
47
47
 
50
50
 * the timing of the drawing of the clock face is recalculated with
51
51
   every rotation of the propeller.
52
52
    
53
 
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
   software skips every other one. This means that the clock may
55
55
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to discover the position that
 
56
   position. You will need to experiment to dicsover the position that
57
57
   the propeller must be in when starting the clock.
58
58
    
59
59
Usage instructions:
75
75
 
76
76
******************************************************************************/
77
77
 
78
 
#include "config.h"
79
 
#include "button.h"
80
 
#include "time.h"
81
 
#include "Arduino.h"
82
 
#include "modes/analogue_clock.h"
83
 
#include "modes/digital_clock.h"
84
 
#include "modes/test_pattern.h"
85
 
#include "modes/settings_mode.h"
86
 
#include "text.h"
87
 
#include "text_renderer.h"
88
 
#include "common.h"
 
78
 
 
79
#include <Bounce.h>
 
80
#include <DS1307.h>
 
81
#include <Wire.h>
89
82
 
90
83
//_____________________________________________________________________________
91
84
//                                                                         data
92
85
 
 
86
 
93
87
// when non-zero, the time (in microseconds) of a new fan pulse that
94
88
// has just occurred, which means that segment drawing needs to be
95
89
// restarted
96
 
static unsigned long _new_pulse_at = 0;
 
90
static unsigned long new_pulse_at = 0;
97
91
 
98
92
// the time (in microseconds) when the last fan pulse occurred
99
 
static unsigned long _last_pulse_at = 0;
 
93
static unsigned long last_pulse_at = 0;
100
94
 
101
95
// duration (in microseconds) that a segment should be displayed
102
 
static unsigned long _segment_step = 0;
 
96
static unsigned long segment_step = 0;
103
97
 
104
98
// remainder after divisor and a tally of the remainders for each segment
105
 
static unsigned long _segment_step_sub_step = 0;
106
 
static unsigned long _segment_step_sub = 0;
107
 
 
108
 
// the button
109
 
static Button _button( 3 );
110
 
 
111
 
// modes
112
 
static int _major_mode = 0;
113
 
static int _minor_mode = 0;
114
 
 
115
 
#define MAIN_MODE_IDX 1
116
 
#define SETTINGS_MODE_IDX 0
117
 
 
118
 
#define ANALOGUE_CLOCK_IDX 0
119
 
#define DIGITAL_CLOCK_IDX 1
120
 
#define TEST_PATTERN_IDX 2
 
99
static unsigned long segment_step_sub_step = 0;
 
100
static unsigned long segment_step_sub = 0;
 
101
 
 
102
// flag to indicate that the drawing mode should be cycled to the next one
 
103
static bool inc_draw_mode = false;
 
104
 
 
105
// a bounce-managed button
 
106
static Bounce button( 3, 50 );
 
107
 
 
108
// the time
 
109
static int time_hours = 0;
 
110
static int time_minutes = 0;
 
111
static int time_seconds = 0;
 
112
 
 
113
// number of segments in a full display (rotation) is 60 (one per
 
114
// second) times the desired number of sub-divisions of a second
 
115
#define NUM_SECOND_SEGMENTS 5
 
116
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
117
 
 
118
// clock draw direction
 
119
#define CLOCK_FORWARD 0
 
120
 
 
121
// rotate display (in segments)
 
122
#define CLOCK_SHIFT ( 58 * NUM_SECOND_SEGMENTS - 1 )
121
123
 
122
124
//_____________________________________________________________________________
123
125
//                                                                         code
124
126
 
125
127
 
126
 
// activate the current minor mode
127
 
void activate_minor_mode()
128
 
{
129
 
        // reset text
130
 
        Text::reset();
131
 
        leds_off();
132
 
 
133
 
        // give the mode a chance to init
134
 
        switch( _minor_mode ) {
135
 
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
136
 
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
137
 
        }
138
 
}
139
 
 
140
 
 
141
 
// activate major mode
142
 
void activate_major_mode()
143
 
{
144
 
        // reset text
145
 
        Text::reset();
146
 
        leds_off();
147
 
 
148
 
        // reset buttons
149
 
        _button.set_press_mode( _major_mode != SETTINGS_MODE_IDX );
150
 
 
151
 
        // give the mode a chance to init
152
 
        switch( _major_mode ) {
153
 
        case MAIN_MODE_IDX: activate_minor_mode(); break;
154
 
        case SETTINGS_MODE_IDX: settings_mode_activate(); break;
155
 
        }
156
 
}
157
 
 
158
 
 
159
 
// perform button events
160
 
void do_button_events()
161
 
{
162
 
        // loop through pending events
163
 
        while( int event = _button.get_event() )
164
 
        {
165
 
                switch( event )
166
 
                {
167
 
                case 1:
168
 
                        // short press
169
 
                        switch( _major_mode ) {
170
 
                        case MAIN_MODE_IDX:
171
 
                                switch( _minor_mode ) {
172
 
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
173
 
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
174
 
                                }
175
 
                                break;
176
 
                        case SETTINGS_MODE_IDX: settings_mode_press(); break;
177
 
                        }
178
 
                        break;
179
 
 
180
 
                case 2:
181
 
                        // long press
182
 
                        switch( _major_mode ) {
183
 
                        case MAIN_MODE_IDX:
184
 
                                if( ++_minor_mode >= 3 )
185
 
                                        _minor_mode = 0;
186
 
                                activate_minor_mode();
187
 
                                break;
188
 
                        case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
189
 
                        }
190
 
                        break;
191
 
 
192
 
                case 3:
193
 
                        // looooong press (change major mode)
194
 
                        if( ++_major_mode > 1 )
195
 
                                _major_mode = 0;
196
 
                        activate_major_mode();
197
 
                        break;
 
128
// check for button presses
 
129
void checkButtons()
 
130
{
 
131
        // update buttons
 
132
        button.update();
 
133
 
 
134
        // notice button presses
 
135
        if( button.risingEdge() )
 
136
                inc_draw_mode = true;
 
137
}
 
138
 
 
139
 
 
140
// keep track of time
 
141
void trackTime()
 
142
{
 
143
        // previous time and any carried-over milliseconds
 
144
        static unsigned long last_time = millis();
 
145
        static unsigned long carry = 0;
 
146
 
 
147
        // how many milliseonds have elapsed since we last checked?
 
148
        unsigned long next_time = millis();
 
149
        unsigned long delta = next_time - last_time + carry;
 
150
 
 
151
        // update the previous time and carried-over milliseconds
 
152
        last_time = next_time;
 
153
        carry = delta % 1000;
 
154
 
 
155
        // add the seconds that have passed to the time
 
156
        time_seconds += delta / 1000;
 
157
        while( time_seconds >= 60 ) {
 
158
                time_seconds -= 60;
 
159
                time_minutes++;
 
160
                if( time_minutes >= 60 ) {
 
161
                        time_minutes -= 60;
 
162
                        time_hours++;
 
163
                        if( time_hours >= 24 )
 
164
                                time_hours -= 24;
198
165
                }
199
166
        }
200
167
}
201
168
 
202
169
 
 
170
// turn an led on/off
 
171
void ledOn( int num, bool on )
 
172
{
 
173
        if( num < 0 || num > 9 ) return;
 
174
 
 
175
        // convert to pin no.
 
176
        num += 4;
 
177
 
 
178
        // pin 4 needs to be inverted (it's driving a PNP)
 
179
        if( num == 4 ) on = !on;
 
180
 
 
181
        digitalWrite( num, on? HIGH : LOW );
 
182
}
 
183
 
 
184
 
 
185
// draw a segment for the test display
 
186
void drawNextSegment_test( int segment )
 
187
{
 
188
        // turn on outside LEDs
 
189
        ledOn( 9, true );
 
190
 
 
191
        // display segment number in binary across in the inside LEDs,
 
192
        // with the LED on pin 12 showing the least-significant bit
 
193
        for( int a = 0; a < 9; a++ )
 
194
                ledOn( 8 - a, ( segment >> a ) & 1 );
 
195
}
 
196
 
 
197
 
 
198
// draw a segment for the time display
 
199
void drawNextSegment_time( int segment )
 
200
{
 
201
        int second = segment / NUM_SECOND_SEGMENTS;
 
202
        int second_segment = segment % NUM_SECOND_SEGMENTS;
 
203
 
 
204
        // what needs to be drawn?
 
205
        bool draw_tick = ( !second_segment && second % 5 == 0 && second ) ||
 
206
                ( second == 0 && second_segment == 1 ) ||
 
207
                ( second == 59 && second_segment == NUM_SECOND_SEGMENTS - 1 );
 
208
        bool draw_second = !second_segment && second == time_seconds;
 
209
        bool draw_minute = !second_segment && second == time_minutes;
 
210
        bool draw_hour = segment == time_hours * 5 * NUM_SECOND_SEGMENTS +
 
211
                ( 5 * NUM_SECOND_SEGMENTS * time_minutes / 60 );
 
212
 
 
213
        // set the LEDs
 
214
        ledOn( 9, true );
 
215
        ledOn( 8, draw_tick || draw_second );
 
216
        for( int a = 6; a <= 7; a++ )
 
217
                ledOn( a, draw_minute || draw_second );
 
218
        for( int a = 0; a <= 5; a++ )
 
219
                ledOn( a, draw_minute || draw_second || draw_hour );
 
220
}
 
221
 
 
222
 
203
223
// draw a display segment
204
 
void draw_next_segment( bool reset )
 
224
void drawNextSegment( bool reset )
205
225
{
 
226
        static int draw_mode = 0;
 
227
 
206
228
        // keep track of segment
207
229
#if CLOCK_FORWARD
208
230
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
212
234
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
213
235
#endif
214
236
 
215
 
        // reset the text renderer
216
 
        TextRenderer::reset_buffer();
217
 
 
218
 
        // frame reset
219
 
        if( reset ) {
220
 
                switch( _major_mode ) {
221
 
                case MAIN_MODE_IDX:
222
 
                        switch( _minor_mode ) {
223
 
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
224
 
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
225
 
                        }
226
 
                        break;
227
 
                case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
228
 
                }
229
 
 
230
 
                // tell the text services we're starting a new frame
231
 
                Text::draw_reset();
232
 
        }
233
 
 
234
 
        // draw
235
 
        switch( _major_mode ) {
236
 
        case MAIN_MODE_IDX:
237
 
                switch( _minor_mode ) {
238
 
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
239
 
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
240
 
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
241
 
                }
242
 
                break;
243
 
        case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
244
 
        }
245
 
 
246
 
        // draw any text that was rendered
247
 
        TextRenderer::output_buffer();
 
237
        // handle mode switch requests
 
238
        if( reset && inc_draw_mode ) {
 
239
                inc_draw_mode = false;
 
240
                draw_mode++;
 
241
                if( draw_mode >= 2 )
 
242
                        draw_mode = 0;
 
243
        }
 
244
 
 
245
        // draw the segment
 
246
        switch( draw_mode ) {
 
247
        case 0: drawNextSegment_test( segment ); break;
 
248
        case 1: drawNextSegment_time( segment ); break;
 
249
        }
248
250
 
249
251
#if CLOCK_FORWARD
250
252
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
255
257
 
256
258
 
257
259
// calculate time constants when a new pulse has occurred
258
 
void calculate_segment_times()
 
260
void calculateSegmentTimes()
259
261
{
260
262
        // check for overflows, and only recalculate times if there isn't
261
263
        // one (if there is, we'll just go with the last pulse's times)
262
 
        if( _new_pulse_at > _last_pulse_at )
 
264
        if( new_pulse_at > last_pulse_at )
263
265
        {
264
266
                // new segment stepping times
265
 
                unsigned long delta = _new_pulse_at - _last_pulse_at;
266
 
                _segment_step = delta / NUM_SEGMENTS;
267
 
                _segment_step_sub = 0;
268
 
                _segment_step_sub_step = delta % NUM_SEGMENTS;
 
267
                unsigned long delta = new_pulse_at - last_pulse_at;
 
268
                segment_step = delta / NUM_SEGMENTS;
 
269
                segment_step_sub = 0;
 
270
                segment_step_sub_step = delta % NUM_SEGMENTS;
269
271
        }
270
272
 
271
273
        // now we have dealt with this pulse, save the pulse time and
272
274
        // clear new_pulse_at, ready for the next pulse
273
 
        _last_pulse_at = _new_pulse_at;
274
 
        _new_pulse_at = 0;
 
275
        last_pulse_at = new_pulse_at;
 
276
        new_pulse_at = 0;
275
277
}
276
278
 
277
279
 
278
280
// wait until it is time to draw the next segment or a new pulse has
279
281
// occurred
280
 
void wait_till_end_of_segment( bool reset )
 
282
void waitTillNextSegment( bool reset )
281
283
{
282
284
        static unsigned long end_time = 0;
283
285
 
284
286
        // handle reset
285
287
        if( reset )
286
 
                end_time = _last_pulse_at;
 
288
                end_time = last_pulse_at;
287
289
 
288
290
        // work out the time that this segment should be displayed until
289
 
        end_time += _segment_step;
290
 
        _segment_step_sub += _segment_step_sub_step;
291
 
        if( _segment_step_sub >= NUM_SEGMENTS ) {
292
 
                _segment_step_sub -= NUM_SEGMENTS;
 
291
        end_time += segment_step;
 
292
        segment_step_sub += segment_step_sub_step;
 
293
        if( segment_step_sub >= NUM_SEGMENTS ) {
 
294
                segment_step_sub -= NUM_SEGMENTS;
293
295
                end_time++;
294
296
        }
295
297
 
296
298
        // wait
297
 
        while( micros() < end_time && !_new_pulse_at );
 
299
        while( micros() < end_time && !new_pulse_at );
298
300
}
299
301
 
300
302
 
301
303
// ISR to handle the pulses from the fan's tachiometer
302
 
void fan_pulse_handler()
 
304
void fanPulseHandler()
303
305
{
304
306
        // the fan actually sends two pulses per revolution. These pulses
305
307
        // may not be exactly evenly distributed around the rotation, so
310
312
        if( !ignore )
311
313
        {
312
314
                // set a new pulse time
313
 
                _new_pulse_at = micros();
 
315
                new_pulse_at = micros();
314
316
        }
315
317
}
316
318
 
319
321
void setup()
320
322
{
321
323
        // set up an interrupt handler on pin 2 to nitice fan pulses
322
 
        attachInterrupt( 0, fan_pulse_handler, RISING );
 
324
        attachInterrupt( 0, fanPulseHandler, RISING );
323
325
        digitalWrite( 2, HIGH );
324
326
  
325
327
        // set up output pins (4 to 13) for the led array
329
331
        // set up mode-switch button on pin 3
330
332
        pinMode( 3, INPUT );
331
333
        digitalWrite( 3, HIGH );
332
 
        static int event_times[] = { 5, 500, 4000, 0 };
333
 
        _button.set_event_times( event_times );
334
 
 
335
 
        // initialise RTC
336
 
        Time::init();
337
 
 
338
 
        // init text renderer
339
 
        TextRenderer::init();
340
 
 
341
 
        // activate the minor mode
342
 
        activate_major_mode();
 
334
 
 
335
        // get the time from the real-time clock
 
336
        int rtc_data[ 7 ];
 
337
        RTC.get( rtc_data, true );
 
338
        time_hours = rtc_data[ DS1307_HR ];
 
339
        time_minutes = rtc_data[ DS1307_MIN ];
 
340
        time_seconds = rtc_data[ DS1307_SEC ];
 
341
 
 
342
        // serial comms
 
343
        Serial.begin( 9600 );
343
344
}
344
345
 
345
346
 
347
348
void loop()
348
349
{
349
350
        // if there has been a new pulse, we'll be resetting the display
350
 
        bool reset = _new_pulse_at? true : false;
351
 
 
352
 
        // update button
353
 
        _button.update();
 
351
        bool reset = new_pulse_at? true : false;
354
352
 
355
353
        // only do this stuff at the start of a display cycle, to ensure
356
354
        // that no state changes mid-display
357
355
        if( reset )
358
356
        {
359
 
                // calculate segment times
360
 
                calculate_segment_times();
 
357
                // check buttons
 
358
                checkButtons();
361
359
 
362
360
                // keep track of time
363
 
                Time::update();
364
 
 
365
 
                // perform button events
366
 
                do_button_events();
 
361
                trackTime();
367
362
        }
368
363
 
369
364
        // draw this segment
370
 
        draw_next_segment( reset );
 
365
        drawNextSegment( reset );
 
366
 
 
367
        // do we need to recalculate segment times?
 
368
        if( reset )
 
369
                calculateSegmentTimes();
371
370
 
372
371
        // wait till it's time to draw the next segment
373
 
        wait_till_end_of_segment( reset );
 
372
        waitTillNextSegment( reset );
374
373
}