29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
80
#include "config.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
82
#include "mode_switcher.h"
86
85
//_____________________________________________________________________________
89
89
// when non-zero, the time (in microseconds) of a new fan pulse that
90
90
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
92
static unsigned long new_pulse_at = 0;
94
94
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
95
static unsigned long last_pulse_at = 0;
97
97
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
98
static unsigned long segment_step = 0;
100
100
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
101
static unsigned long segment_step_sub_step = 0;
102
static unsigned long segment_step_sub = 0;
104
// flag to indicate that the drawing mode should be cycled to the next one
105
static bool inc_draw_mode = false;
107
// a bounce-managed button
108
static Button button( 3 );
117
110
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
114
// check for button presses
124
switch( _minor_mode ) {
125
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
126
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
118
int event = button.update();
123
inc_draw_mode = true;
130
// perform button events
131
void do_button_events()
129
// turn an led on/off
130
void ledOn( int num, bool on )
133
// loop through pending events
134
while( int event = _button.get_event() )
140
switch( _major_mode ) {
142
switch( _minor_mode ) {
143
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
144
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
152
switch( _major_mode ) {
154
if( ++_minor_mode >= 3 )
156
switch( _minor_mode ) {
157
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
164
// looooong press (change major mode)
165
if( ++_major_mode > 0 )
167
switch( _major_mode ) {
168
case MAIN_MODE_IDX: _minor_mode = 0; break;
170
activate_minor_mode();
132
if( num < 0 || num > 9 ) return;
134
// convert to pin no.
137
// pin 4 needs to be inverted (it's driving a PNP)
138
if( num == 4 ) on = !on;
140
digitalWrite( num, on? HIGH : LOW );
177
144
// draw a display segment
178
void draw_next_segment( bool reset )
145
void drawNextSegment( bool reset )
147
static ModeSwitcher mode_switcher;
148
static bool init = false;
152
mode_switcher.activate();
180
155
// keep track of segment
181
156
#if CLOCK_FORWARD
182
157
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
186
161
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
191
switch( _major_mode ) {
193
switch( _minor_mode ) {
194
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
195
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
202
switch( _major_mode ) {
204
switch( _minor_mode ) {
205
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
206
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
207
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
165
Drawer &drawer = mode_switcher.get_drawer();
166
if( reset ) drawer.draw_reset();
167
drawer.draw( segment );
212
169
#if CLOCK_FORWARD
213
170
if( ++segment >= NUM_SEGMENTS ) segment = 0;
220
177
// calculate time constants when a new pulse has occurred
221
void calculate_segment_times()
178
void calculateSegmentTimes()
223
180
// check for overflows, and only recalculate times if there isn't
224
181
// one (if there is, we'll just go with the last pulse's times)
225
if( _new_pulse_at > _last_pulse_at )
182
if( new_pulse_at > last_pulse_at )
227
184
// new segment stepping times
228
unsigned long delta = _new_pulse_at - _last_pulse_at;
229
_segment_step = delta / NUM_SEGMENTS;
230
_segment_step_sub = 0;
231
_segment_step_sub_step = delta % NUM_SEGMENTS;
185
unsigned long delta = new_pulse_at - last_pulse_at;
186
segment_step = delta / NUM_SEGMENTS;
187
segment_step_sub = 0;
188
segment_step_sub_step = delta % NUM_SEGMENTS;
234
191
// now we have dealt with this pulse, save the pulse time and
235
192
// clear new_pulse_at, ready for the next pulse
236
_last_pulse_at = _new_pulse_at;
193
last_pulse_at = new_pulse_at;
241
198
// wait until it is time to draw the next segment or a new pulse has
243
void wait_till_end_of_segment( bool reset )
200
void waitTillNextSegment( bool reset )
245
202
static unsigned long end_time = 0;
249
end_time = _last_pulse_at;
206
end_time = last_pulse_at;
251
208
// work out the time that this segment should be displayed until
252
end_time += _segment_step;
253
_segment_step_sub += _segment_step_sub_step;
254
if( _segment_step_sub >= NUM_SEGMENTS ) {
255
_segment_step_sub -= NUM_SEGMENTS;
209
end_time += segment_step;
210
segment_step_sub += segment_step_sub_step;
211
if( segment_step_sub >= NUM_SEGMENTS ) {
212
segment_step_sub -= NUM_SEGMENTS;
260
while( micros() < end_time && !_new_pulse_at );
217
while( micros() < end_time && !new_pulse_at );
264
221
// ISR to handle the pulses from the fan's tachiometer
265
void fan_pulse_handler()
222
void fanPulseHandler()
267
224
// the fan actually sends two pulses per revolution. These pulses
268
225
// may not be exactly evenly distributed around the rotation, so
292
249
// set up mode-switch button on pin 3
293
250
pinMode( 3, INPUT );
294
251
digitalWrite( 3, HIGH );
295
static int event_times[] = { 5, 500, 4000, 0 };
296
_button.set_event_times( event_times );
301
// activate the minor mode
302
switch( _major_mode ) {
303
case MAIN_MODE_IDX: activate_minor_mode(); break;
252
button.add_event_at( 5, 1 );
253
button.add_event_at( 1000, 2 );
254
button.add_event_at( 4000, 3 );
257
Serial.begin( 9600 );
311
264
// if there has been a new pulse, we'll be resetting the display
312
bool reset = _new_pulse_at? true : false;
265
bool reset = new_pulse_at? true : false;
317
267
// only do this stuff at the start of a display cycle, to ensure
318
268
// that no state changes mid-display
321
// calculate segment times
322
calculate_segment_times();
324
274
// keep track of time
327
// perform button events
275
Time &time = Time::get_instance();
331
279
// draw this segment
332
draw_next_segment( reset );
280
drawNextSegment( reset );
282
// do we need to recalculate segment times?
284
calculateSegmentTimes();
334
286
// wait till it's time to draw the next segment
335
wait_till_end_of_segment( reset );
287
waitTillNextSegment( reset );