76
76
******************************************************************************/
78
79
#include "config.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
81
#include "mode_switcher.h"
86
84
//_____________________________________________________________________________
89
88
// when non-zero, the time (in microseconds) of a new fan pulse that
90
89
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
91
static unsigned long new_pulse_at = 0;
94
93
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
94
static unsigned long last_pulse_at = 0;
97
96
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
97
static unsigned long segment_step = 0;
100
99
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
100
static unsigned long segment_step_sub_step = 0;
101
static unsigned long segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
104
static Button button( 3 );
107
static int major_mode = 0;
110
static std::vector< MajorMode * > major_modes;
117
112
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
124
switch( _minor_mode ) {
125
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
129
// perform button events
130
void do_button_events()
132
// loop through pending events
133
while( int event = _button.get_event() )
139
switch( _major_mode ) {
141
switch( _minor_mode ) {
142
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
143
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
151
switch( _major_mode ) {
153
if( ++_minor_mode >= 3 )
155
switch( _minor_mode ) {
156
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
163
// looooong press (change major mode)
164
if( ++_major_mode > 0 )
166
switch( _major_mode ) {
167
case MAIN_MODE_IDX: _minor_mode = 0; break;
169
activate_minor_mode();
116
// check for button presses
120
int event = button.update();
125
major_modes[ major_mode ]->short_press();
128
major_modes[ major_mode ]->long_press();
131
if( ++major_mode >= major_modes.size() )
133
major_modes[ major_mode ]->activate();
176
139
// draw a display segment
177
void draw_next_segment( bool reset )
140
void drawNextSegment( bool reset )
179
142
// keep track of segment
180
143
#if CLOCK_FORWARD
207
164
// calculate time constants when a new pulse has occurred
208
void calculate_segment_times()
165
void calculateSegmentTimes()
210
167
// check for overflows, and only recalculate times if there isn't
211
168
// one (if there is, we'll just go with the last pulse's times)
212
if( _new_pulse_at > _last_pulse_at )
169
if( new_pulse_at > last_pulse_at )
214
171
// new segment stepping times
215
unsigned long delta = _new_pulse_at - _last_pulse_at;
216
_segment_step = delta / NUM_SEGMENTS;
217
_segment_step_sub = 0;
218
_segment_step_sub_step = delta % NUM_SEGMENTS;
172
unsigned long delta = new_pulse_at - last_pulse_at;
173
segment_step = delta / NUM_SEGMENTS;
174
segment_step_sub = 0;
175
segment_step_sub_step = delta % NUM_SEGMENTS;
221
178
// now we have dealt with this pulse, save the pulse time and
222
179
// clear new_pulse_at, ready for the next pulse
223
_last_pulse_at = _new_pulse_at;
180
last_pulse_at = new_pulse_at;
228
185
// wait until it is time to draw the next segment or a new pulse has
230
void wait_till_end_of_segment( bool reset )
187
void waitTillNextSegment( bool reset )
232
189
static unsigned long end_time = 0;
236
end_time = _last_pulse_at;
193
end_time = last_pulse_at;
238
195
// work out the time that this segment should be displayed until
239
end_time += _segment_step;
240
_segment_step_sub += _segment_step_sub_step;
241
if( _segment_step_sub >= NUM_SEGMENTS ) {
242
_segment_step_sub -= NUM_SEGMENTS;
196
end_time += segment_step;
197
segment_step_sub += segment_step_sub_step;
198
if( segment_step_sub >= NUM_SEGMENTS ) {
199
segment_step_sub -= NUM_SEGMENTS;
247
while( micros() < end_time && !_new_pulse_at );
204
while( micros() < end_time && !new_pulse_at );
251
208
// ISR to handle the pulses from the fan's tachiometer
252
void fan_pulse_handler()
209
void fanPulseHandler()
254
211
// the fan actually sends two pulses per revolution. These pulses
255
212
// may not be exactly evenly distributed around the rotation, so
279
236
// set up mode-switch button on pin 3
280
237
pinMode( 3, INPUT );
281
238
digitalWrite( 3, HIGH );
282
static int event_times[] = { 5, 500, 4000, 0 };
283
_button.set_event_times( event_times );
285
// activate the minor mode
286
switch( _major_mode ) {
287
case MAIN_MODE_IDX: activate_minor_mode(); break;
239
button.add_event_at( 5, 1 );
240
button.add_event_at( 1000, 2 );
241
button.add_event_at( 4000, 3 );
244
Serial.begin( 9600 );
246
// set up major modes
247
static ModeSwitcher mode_switcher;
248
major_modes.push_back( &mode_switcher );
249
major_modes[ 0 ]->activate();
295
256
// if there has been a new pulse, we'll be resetting the display
296
bool reset = _new_pulse_at? true : false;
257
bool reset = new_pulse_at? true : false;
301
259
// only do this stuff at the start of a display cycle, to ensure
302
260
// that no state changes mid-display
305
// calculate segment times
306
calculate_segment_times();
308
266
// keep track of time
309
267
Time &time = Time::get_instance();
312
// perform button events
316
271
// draw this segment
317
draw_next_segment( reset );
272
drawNextSegment( reset );
274
// do we need to recalculate segment times?
276
calculateSegmentTimes();
319
278
// wait till it's time to draw the next segment
320
wait_till_end_of_segment( reset );
279
waitTillNextSegment( reset );