29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
79
#include "config.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
81
#include "mode_switcher.h"
86
84
//_____________________________________________________________________________
89
88
// when non-zero, the time (in microseconds) of a new fan pulse that
90
89
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
91
static unsigned long new_pulse_at = 0;
94
93
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
94
static unsigned long last_pulse_at = 0;
97
96
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
97
static unsigned long segment_step = 0;
100
99
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
100
static unsigned long segment_step_sub_step = 0;
101
static unsigned long segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
104
static Button button( 3 );
107
static int major_mode = 0;
110
static std::vector< MajorMode * > major_modes;
117
112
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
124
switch( _minor_mode ) {
125
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
126
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
130
// perform button events
131
void do_button_events()
133
// loop through pending events
134
while( int event = _button.get_event() )
140
switch( _major_mode ) {
142
switch( _minor_mode ) {
143
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
144
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
152
switch( _major_mode ) {
154
if( ++_minor_mode >= 3 )
156
switch( _minor_mode ) {
157
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
164
// looooong press (change major mode)
165
if( ++_major_mode > 0 )
167
switch( _major_mode ) {
168
case MAIN_MODE_IDX: _minor_mode = 0; break;
170
activate_minor_mode();
116
// check for button presses
120
int event = button.update();
125
major_modes[ major_mode ]->short_press();
128
major_modes[ major_mode ]->long_press();
131
if( ++major_mode >= major_modes.size() )
133
major_modes[ major_mode ]->activate();
177
139
// draw a display segment
178
void draw_next_segment( bool reset )
140
void drawNextSegment( bool reset )
180
142
// keep track of segment
181
143
#if CLOCK_FORWARD
186
148
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
191
switch( _major_mode ) {
193
switch( _minor_mode ) {
194
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
195
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
202
switch( _major_mode ) {
204
switch( _minor_mode ) {
205
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
206
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
207
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
152
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
153
if( reset ) drawer.draw_reset();
154
drawer.draw( segment );
212
156
#if CLOCK_FORWARD
213
157
if( ++segment >= NUM_SEGMENTS ) segment = 0;
220
164
// calculate time constants when a new pulse has occurred
221
void calculate_segment_times()
165
void calculateSegmentTimes()
223
167
// check for overflows, and only recalculate times if there isn't
224
168
// one (if there is, we'll just go with the last pulse's times)
225
if( _new_pulse_at > _last_pulse_at )
169
if( new_pulse_at > last_pulse_at )
227
171
// new segment stepping times
228
unsigned long delta = _new_pulse_at - _last_pulse_at;
229
_segment_step = delta / NUM_SEGMENTS;
230
_segment_step_sub = 0;
231
_segment_step_sub_step = delta % NUM_SEGMENTS;
172
unsigned long delta = new_pulse_at - last_pulse_at;
173
segment_step = delta / NUM_SEGMENTS;
174
segment_step_sub = 0;
175
segment_step_sub_step = delta % NUM_SEGMENTS;
234
178
// now we have dealt with this pulse, save the pulse time and
235
179
// clear new_pulse_at, ready for the next pulse
236
_last_pulse_at = _new_pulse_at;
180
last_pulse_at = new_pulse_at;
241
185
// wait until it is time to draw the next segment or a new pulse has
243
void wait_till_end_of_segment( bool reset )
187
void waitTillNextSegment( bool reset )
245
189
static unsigned long end_time = 0;
249
end_time = _last_pulse_at;
193
end_time = last_pulse_at;
251
195
// work out the time that this segment should be displayed until
252
end_time += _segment_step;
253
_segment_step_sub += _segment_step_sub_step;
254
if( _segment_step_sub >= NUM_SEGMENTS ) {
255
_segment_step_sub -= NUM_SEGMENTS;
196
end_time += segment_step;
197
segment_step_sub += segment_step_sub_step;
198
if( segment_step_sub >= NUM_SEGMENTS ) {
199
segment_step_sub -= NUM_SEGMENTS;
260
while( micros() < end_time && !_new_pulse_at );
204
while( micros() < end_time && !new_pulse_at );
264
208
// ISR to handle the pulses from the fan's tachiometer
265
void fan_pulse_handler()
209
void fanPulseHandler()
267
211
// the fan actually sends two pulses per revolution. These pulses
268
212
// may not be exactly evenly distributed around the rotation, so
292
236
// set up mode-switch button on pin 3
293
237
pinMode( 3, INPUT );
294
238
digitalWrite( 3, HIGH );
295
static int event_times[] = { 5, 500, 4000, 0 };
296
_button.set_event_times( event_times );
301
// activate the minor mode
302
switch( _major_mode ) {
303
case MAIN_MODE_IDX: activate_minor_mode(); break;
239
button.add_event_at( 5, 1 );
240
button.add_event_at( 1000, 2 );
241
button.add_event_at( 4000, 3 );
244
Serial.begin( 9600 );
246
// set up major modes
247
static ModeSwitcher mode_switcher;
248
major_modes.push_back( &mode_switcher );
249
major_modes[ 0 ]->activate();
311
256
// if there has been a new pulse, we'll be resetting the display
312
bool reset = _new_pulse_at? true : false;
257
bool reset = new_pulse_at? true : false;
317
259
// only do this stuff at the start of a display cycle, to ensure
318
260
// that no state changes mid-display
321
// calculate segment times
322
calculate_segment_times();
324
266
// keep track of time
327
// perform button events
267
Time &time = Time::get_instance();
331
271
// draw this segment
332
draw_next_segment( reset );
272
drawNextSegment( reset );
274
// do we need to recalculate segment times?
276
calculateSegmentTimes();
334
278
// wait till it's time to draw the next segment
335
wait_till_end_of_segment( reset );
279
waitTillNextSegment( reset );