29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
79
#include "config.h"
82
#include "modes/analogue_clock.h"
83
#include "modes/digital_clock.h"
84
#include "modes/test_pattern.h"
85
#include "modes/settings_mode.h"
87
#include "text_renderer.h"
81
#include "mode_switcher.h"
90
84
//_____________________________________________________________________________
93
88
// when non-zero, the time (in microseconds) of a new fan pulse that
94
89
// has just occurred, which means that segment drawing needs to be
96
static unsigned long _new_pulse_at = 0;
91
static unsigned long new_pulse_at = 0;
98
93
// the time (in microseconds) when the last fan pulse occurred
99
static unsigned long _last_pulse_at = 0;
94
static unsigned long last_pulse_at = 0;
101
96
// duration (in microseconds) that a segment should be displayed
102
static unsigned long _segment_step = 0;
97
static unsigned long segment_step = 0;
104
99
// remainder after divisor and a tally of the remainders for each segment
105
static unsigned long _segment_step_sub_step = 0;
106
static unsigned long _segment_step_sub = 0;
100
static unsigned long segment_step_sub_step = 0;
101
static unsigned long segment_step_sub = 0;
109
static Button _button( 3 );
112
static int _major_mode = 0;
113
static int _minor_mode = 0;
115
#define MAIN_MODE_IDX 1
116
#define SETTINGS_MODE_IDX 0
118
#define ANALOGUE_CLOCK_IDX 0
119
#define DIGITAL_CLOCK_IDX 1
120
#define TEST_PATTERN_IDX 2
104
static Button button( 3 );
107
static int major_mode = 0;
110
static std::vector< MajorMode * > major_modes;
122
112
//_____________________________________________________________________________
126
// activate the current minor mode
127
void activate_minor_mode()
133
// give the mode a chance to init
134
switch( _minor_mode ) {
135
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
136
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
141
// activate major mode
142
void activate_major_mode()
149
_button.set_press_mode( _major_mode != SETTINGS_MODE_IDX );
151
// give the mode a chance to init
152
switch( _major_mode ) {
153
case MAIN_MODE_IDX: activate_minor_mode(); break;
154
case SETTINGS_MODE_IDX: settings_mode_activate(); break;
159
// perform button events
160
void do_button_events()
162
// loop through pending events
163
while( int event = _button.get_event() )
169
switch( _major_mode ) {
171
switch( _minor_mode ) {
172
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
173
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
176
case SETTINGS_MODE_IDX: settings_mode_press(); break;
182
switch( _major_mode ) {
184
if( ++_minor_mode >= 3 )
186
activate_minor_mode();
188
case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
193
// looooong press (change major mode)
194
if( ++_major_mode > 1 )
196
activate_major_mode();
116
// check for button presses
120
int event = button.update();
125
major_modes[ major_mode ]->short_press();
128
major_modes[ major_mode ]->long_press();
131
if( ++major_mode >= major_modes.size() )
133
major_modes[ major_mode ]->activate();
203
139
// draw a display segment
204
void draw_next_segment( bool reset )
140
void drawNextSegment( bool reset )
206
142
// keep track of segment
207
143
#if CLOCK_FORWARD
212
148
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
215
// reset the text renderer
216
TextRenderer::reset_buffer();
220
switch( _major_mode ) {
222
switch( _minor_mode ) {
223
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
224
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
227
case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
230
// tell the text services we're starting a new frame
235
switch( _major_mode ) {
237
switch( _minor_mode ) {
238
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
239
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
240
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
243
case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
246
// draw any text that was rendered
247
TextRenderer::output_buffer();
152
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
153
if( reset ) drawer.draw_reset();
154
drawer.draw( segment );
249
156
#if CLOCK_FORWARD
250
157
if( ++segment >= NUM_SEGMENTS ) segment = 0;
257
164
// calculate time constants when a new pulse has occurred
258
void calculate_segment_times()
165
void calculateSegmentTimes()
260
167
// check for overflows, and only recalculate times if there isn't
261
168
// one (if there is, we'll just go with the last pulse's times)
262
if( _new_pulse_at > _last_pulse_at )
169
if( new_pulse_at > last_pulse_at )
264
171
// new segment stepping times
265
unsigned long delta = _new_pulse_at - _last_pulse_at;
266
_segment_step = delta / NUM_SEGMENTS;
267
_segment_step_sub = 0;
268
_segment_step_sub_step = delta % NUM_SEGMENTS;
172
unsigned long delta = new_pulse_at - last_pulse_at;
173
segment_step = delta / NUM_SEGMENTS;
174
segment_step_sub = 0;
175
segment_step_sub_step = delta % NUM_SEGMENTS;
271
178
// now we have dealt with this pulse, save the pulse time and
272
179
// clear new_pulse_at, ready for the next pulse
273
_last_pulse_at = _new_pulse_at;
180
last_pulse_at = new_pulse_at;
278
185
// wait until it is time to draw the next segment or a new pulse has
280
void wait_till_end_of_segment( bool reset )
187
void waitTillNextSegment( bool reset )
282
189
static unsigned long end_time = 0;
286
end_time = _last_pulse_at;
193
end_time = last_pulse_at;
288
195
// work out the time that this segment should be displayed until
289
end_time += _segment_step;
290
_segment_step_sub += _segment_step_sub_step;
291
if( _segment_step_sub >= NUM_SEGMENTS ) {
292
_segment_step_sub -= NUM_SEGMENTS;
196
end_time += segment_step;
197
segment_step_sub += segment_step_sub_step;
198
if( segment_step_sub >= NUM_SEGMENTS ) {
199
segment_step_sub -= NUM_SEGMENTS;
297
while( micros() < end_time && !_new_pulse_at );
204
while( micros() < end_time && !new_pulse_at );
301
208
// ISR to handle the pulses from the fan's tachiometer
302
void fan_pulse_handler()
209
void fanPulseHandler()
304
211
// the fan actually sends two pulses per revolution. These pulses
305
212
// may not be exactly evenly distributed around the rotation, so
329
236
// set up mode-switch button on pin 3
330
237
pinMode( 3, INPUT );
331
238
digitalWrite( 3, HIGH );
332
static int event_times[] = { 5, 500, 4000, 0 };
333
_button.set_event_times( event_times );
338
// init text renderer
339
TextRenderer::init();
341
// activate the minor mode
342
activate_major_mode();
239
button.add_event_at( 5, 1 );
240
button.add_event_at( 1000, 2 );
241
button.add_event_at( 4000, 3 );
244
Serial.begin( 9600 );
246
// set up major modes
247
static ModeSwitcher mode_switcher;
248
major_modes.push_back( &mode_switcher );
249
major_modes[ 0 ]->activate();
349
256
// if there has been a new pulse, we'll be resetting the display
350
bool reset = _new_pulse_at? true : false;
257
bool reset = new_pulse_at? true : false;
355
259
// only do this stuff at the start of a display cycle, to ensure
356
260
// that no state changes mid-display
359
// calculate segment times
360
calculate_segment_times();
362
266
// keep track of time
365
// perform button events
267
Time &time = Time::get_instance();
369
271
// draw this segment
370
draw_next_segment( reset );
272
drawNextSegment( reset );
274
// do we need to recalculate segment times?
276
calculateSegmentTimes();
372
278
// wait till it's time to draw the next segment
373
wait_till_end_of_segment( reset );
279
waitTillNextSegment( reset );