29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
79
#include "config.h"
82
#include "modes/analogue_clock.h"
83
#include "modes/digital_clock.h"
84
#include "modes/test_pattern.h"
85
#include "modes/settings_mode.h"
86
#include "modes/info_mode.h"
88
#include "text_renderer.h"
81
#include "mode_switcher.h"
91
84
//_____________________________________________________________________________
94
88
// when non-zero, the time (in microseconds) of a new fan pulse that
95
89
// has just occurred, which means that segment drawing needs to be
97
static unsigned long _new_pulse_at = 0;
91
static unsigned long new_pulse_at = 0;
99
93
// the time (in microseconds) when the last fan pulse occurred
100
static unsigned long _last_pulse_at = 0;
94
static unsigned long last_pulse_at = 0;
102
96
// duration (in microseconds) that a segment should be displayed
103
static unsigned long _segment_step = 0;
97
static unsigned long segment_step = 0;
105
99
// remainder after divisor and a tally of the remainders for each segment
106
static unsigned long _segment_step_sub_step = 0;
107
static unsigned long _segment_step_sub = 0;
100
static unsigned long segment_step_sub_step = 0;
101
static unsigned long segment_step_sub = 0;
110
static Button _button( 3 );
113
static int _major_mode = 0;
114
static int _minor_mode = 0;
116
#define MAIN_MODE_IDX 1
117
#define SETTINGS_MODE_IDX 0
119
#define ANALOGUE_CLOCK_IDX 0
120
#define DIGITAL_CLOCK_IDX 1
121
#define TEST_PATTERN_IDX 2
122
#define INFO_MODE_IDX 3
104
static Button button( 3 );
107
static int major_mode = 0;
110
static std::vector< MajorMode * > major_modes;
124
112
//_____________________________________________________________________________
128
// activate the current minor mode
129
void activate_minor_mode()
135
// give the mode a chance to init
136
switch( _minor_mode ) {
137
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
138
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
139
case INFO_MODE_IDX: info_mode_activate(); break;
144
// activate major mode
145
void activate_major_mode()
152
_button.set_press_mode( _major_mode != SETTINGS_MODE_IDX );
154
// give the mode a chance to init
155
switch( _major_mode ) {
156
case MAIN_MODE_IDX: activate_minor_mode(); break;
157
case SETTINGS_MODE_IDX: settings_mode_activate(); break;
162
// perform button events
163
void do_button_events()
165
// loop through pending events
166
while( int event = _button.get_event() )
172
switch( _major_mode ) {
174
switch( _minor_mode ) {
175
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
176
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
177
case INFO_MODE_IDX: info_mode_press(); break;
180
case SETTINGS_MODE_IDX: settings_mode_press(); break;
186
switch( _major_mode ) {
188
if( ++_minor_mode >= 3 )
190
activate_minor_mode();
192
case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
197
// looooong press (change major mode)
198
if( ++_major_mode > 1 )
200
activate_major_mode();
116
// check for button presses
120
int event = button.update();
125
major_modes[ major_mode ]->short_press();
128
major_modes[ major_mode ]->long_press();
131
if( ++major_mode >= major_modes.size() )
133
major_modes[ major_mode ]->activate();
207
139
// draw a display segment
208
void draw_next_segment( bool reset )
140
void drawNextSegment( bool reset )
210
142
// keep track of segment
211
143
#if CLOCK_FORWARD
216
148
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
219
// reset the text renderer
220
TextRenderer::reset_buffer();
224
switch( _major_mode ) {
226
switch( _minor_mode ) {
227
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
228
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
229
case INFO_MODE_IDX: info_mode_draw_reset(); break;
232
case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
235
// tell the text services we're starting a new frame
240
switch( _major_mode ) {
242
switch( _minor_mode ) {
243
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
244
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
245
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
246
case INFO_MODE_IDX: info_mode_draw( segment ); break;
249
case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
252
// draw any text that was rendered
253
TextRenderer::output_buffer();
152
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
153
if( reset ) drawer.draw_reset();
154
drawer.draw( segment );
255
156
#if CLOCK_FORWARD
256
157
if( ++segment >= NUM_SEGMENTS ) segment = 0;
263
164
// calculate time constants when a new pulse has occurred
264
void calculate_segment_times()
165
void calculateSegmentTimes()
266
167
// check for overflows, and only recalculate times if there isn't
267
168
// one (if there is, we'll just go with the last pulse's times)
268
if( _new_pulse_at > _last_pulse_at )
169
if( new_pulse_at > last_pulse_at )
270
171
// new segment stepping times
271
unsigned long delta = _new_pulse_at - _last_pulse_at;
272
_segment_step = delta / NUM_SEGMENTS;
273
_segment_step_sub = 0;
274
_segment_step_sub_step = delta % NUM_SEGMENTS;
172
unsigned long delta = new_pulse_at - last_pulse_at;
173
segment_step = delta / NUM_SEGMENTS;
174
segment_step_sub = 0;
175
segment_step_sub_step = delta % NUM_SEGMENTS;
277
178
// now we have dealt with this pulse, save the pulse time and
278
179
// clear new_pulse_at, ready for the next pulse
279
_last_pulse_at = _new_pulse_at;
180
last_pulse_at = new_pulse_at;
284
185
// wait until it is time to draw the next segment or a new pulse has
286
void wait_till_end_of_segment( bool reset )
187
void waitTillNextSegment( bool reset )
288
189
static unsigned long end_time = 0;
292
end_time = _last_pulse_at;
193
end_time = last_pulse_at;
294
195
// work out the time that this segment should be displayed until
295
end_time += _segment_step;
296
_segment_step_sub += _segment_step_sub_step;
297
if( _segment_step_sub >= NUM_SEGMENTS ) {
298
_segment_step_sub -= NUM_SEGMENTS;
196
end_time += segment_step;
197
segment_step_sub += segment_step_sub_step;
198
if( segment_step_sub >= NUM_SEGMENTS ) {
199
segment_step_sub -= NUM_SEGMENTS;
303
while( micros() < end_time && !_new_pulse_at );
204
while( micros() < end_time && !new_pulse_at );
307
// ISR to handle the pulses from the fan's tachometer
308
void fan_pulse_handler()
208
// ISR to handle the pulses from the fan's tachiometer
209
void fanPulseHandler()
310
211
// the fan actually sends two pulses per revolution. These pulses
311
212
// may not be exactly evenly distributed around the rotation, so
335
236
// set up mode-switch button on pin 3
336
237
pinMode( 3, INPUT );
337
238
digitalWrite( 3, HIGH );
338
static int event_times[] = { 5, 500, 4000, 0 };
339
_button.set_event_times( event_times );
344
// init text renderer
345
TextRenderer::init();
347
// activate the minor mode
348
activate_major_mode();
239
button.add_event_at( 5, 1 );
240
button.add_event_at( 1000, 2 );
241
button.add_event_at( 4000, 3 );
244
Serial.begin( 9600 );
246
// set up major modes
247
static ModeSwitcher mode_switcher;
248
major_modes.push_back( &mode_switcher );
249
major_modes[ 0 ]->activate();
355
256
// if there has been a new pulse, we'll be resetting the display
356
bool reset = _new_pulse_at? true : false;
257
bool reset = new_pulse_at? true : false;
361
259
// only do this stuff at the start of a display cycle, to ensure
362
260
// that no state changes mid-display
365
// calculate segment times
366
calculate_segment_times();
368
266
// keep track of time
371
// perform button events
267
Time &time = Time::get_instance();
375
271
// draw this segment
376
draw_next_segment( reset );
272
drawNextSegment( reset );
274
// do we need to recalculate segment times?
276
calculateSegmentTimes();
378
278
// wait till it's time to draw the next segment
379
wait_till_end_of_segment( reset );
279
waitTillNextSegment( reset );