29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
79
#include "config.h"
82
#include "modes/switcher_major_mode.h"
83
#include "modes/settings_major_mode.h"
84
#include "modes/analogue_clock_mode.h"
85
#include "modes/digital_clock_mode.h"
86
#include "modes/info_mode.h"
87
#include "modes/test_pattern_mode.h"
89
#include "text_renderer.h"
81
#include "mode_switcher.h"
92
84
//_____________________________________________________________________________
95
88
// when non-zero, the time (in microseconds) of a new fan pulse that
96
89
// has just occurred, which means that segment drawing needs to be
98
static unsigned long _new_pulse_at = 0;
91
static unsigned long new_pulse_at = 0;
100
93
// the time (in microseconds) when the last fan pulse occurred
101
static unsigned long _last_pulse_at = 0;
94
static unsigned long last_pulse_at = 0;
103
96
// duration (in microseconds) that a segment should be displayed
104
static unsigned long _segment_step = 0;
97
static unsigned long segment_step = 0;
106
99
// remainder after divisor and a tally of the remainders for each segment
107
static unsigned long _segment_step_sub_step = 0;
108
static unsigned long _segment_step_sub = 0;
100
static unsigned long segment_step_sub_step = 0;
101
static unsigned long segment_step_sub = 0;
111
static Button _button( 3 );
104
static Button button( 3 );
107
static int major_mode = 0;
114
static MajorMode *_modes[ 3 ];
116
// current major mode
117
static int _mode = 0;
119
// interupt handler's "ignore every other" flag
120
static bool _pulse_ignore = true;
110
static std::vector< MajorMode * > major_modes;
122
112
//_____________________________________________________________________________
125
// perform button events
126
void do_button_events()
116
// check for button presses
128
// loop through pending events
129
while( int event = _button.get_event() )
135
_modes[ _mode ]->press();
139
_modes[ _mode ]->long_press();
142
// looooong press (change major mode)
143
_modes[ _mode ]->deactivate();
144
if( !_modes[ ++_mode ] ) _mode = 0;
145
_modes[ _mode ]->activate();
148
// switch display upside-down
149
_pulse_ignore = !_pulse_ignore;
120
int event = button.update();
125
major_modes[ major_mode ]->short_press();
128
major_modes[ major_mode ]->long_press();
131
if( ++major_mode >= major_modes.size() )
133
major_modes[ major_mode ]->activate();
156
139
// draw a display segment
157
void draw_next_segment( bool reset )
140
void drawNextSegment( bool reset )
159
142
// keep track of segment
160
static int segment = 0;
161
143
#if CLOCK_FORWARD
144
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
162
145
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
147
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
164
148
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
167
// reset the text renderer's buffer
168
TextRenderer::reset_buffer();
172
_modes[ _mode ]->draw_reset();
174
// tell the text services we're starting a new frame
179
_modes[ _mode ]->draw( segment );
182
Text::draw( segment );
184
// draw text rednerer's buffer
185
TextRenderer::output_buffer();
152
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
153
if( reset ) drawer.draw_reset();
154
drawer.draw( segment );
187
156
#if CLOCK_FORWARD
188
157
if( ++segment >= NUM_SEGMENTS ) segment = 0;
195
164
// calculate time constants when a new pulse has occurred
196
void calculate_segment_times()
165
void calculateSegmentTimes()
198
167
// check for overflows, and only recalculate times if there isn't
199
168
// one (if there is, we'll just go with the last pulse's times)
200
if( _new_pulse_at > _last_pulse_at )
169
if( new_pulse_at > last_pulse_at )
202
171
// new segment stepping times
203
unsigned long delta = _new_pulse_at - _last_pulse_at;
204
_segment_step = delta / NUM_SEGMENTS;
205
_segment_step_sub = 0;
206
_segment_step_sub_step = delta % NUM_SEGMENTS;
172
unsigned long delta = new_pulse_at - last_pulse_at;
173
segment_step = delta / NUM_SEGMENTS;
174
segment_step_sub = 0;
175
segment_step_sub_step = delta % NUM_SEGMENTS;
209
178
// now we have dealt with this pulse, save the pulse time and
210
179
// clear new_pulse_at, ready for the next pulse
211
_last_pulse_at = _new_pulse_at;
180
last_pulse_at = new_pulse_at;
216
185
// wait until it is time to draw the next segment or a new pulse has
218
void wait_till_end_of_segment( bool reset )
187
void waitTillNextSegment( bool reset )
220
189
static unsigned long end_time = 0;
224
end_time = _last_pulse_at;
193
end_time = last_pulse_at;
226
195
// work out the time that this segment should be displayed until
227
end_time += _segment_step;
228
_segment_step_sub += _segment_step_sub_step;
229
if( _segment_step_sub >= NUM_SEGMENTS ) {
230
_segment_step_sub -= NUM_SEGMENTS;
196
end_time += segment_step;
197
segment_step_sub += segment_step_sub_step;
198
if( segment_step_sub >= NUM_SEGMENTS ) {
199
segment_step_sub -= NUM_SEGMENTS;
235
while( micros() < end_time && !_new_pulse_at );
204
while( micros() < end_time && !new_pulse_at );
239
// ISR to handle the pulses from the fan's tachometer
240
void fan_pulse_handler()
208
// ISR to handle the pulses from the fan's tachiometer
209
void fanPulseHandler()
242
211
// the fan actually sends two pulses per revolution. These pulses
243
212
// may not be exactly evenly distributed around the rotation, so
244
213
// we can't recalculate times on every pulse. Instead, we ignore
245
214
// every other pulse so timings are based on a complete rotation.
246
_pulse_ignore = !_pulse_ignore;
215
static bool ignore = true;
249
219
// set a new pulse time
250
_new_pulse_at = micros();
220
new_pulse_at = micros();
266
236
// set up mode-switch button on pin 3
267
237
pinMode( 3, INPUT );
268
238
digitalWrite( 3, HIGH );
269
static int event_times[] = { 10, 500, 2000, 4000, 0 };
270
_button.set_event_times( event_times );
275
// init text renderer
276
TextRenderer::init();
282
static SwitcherMajorMode switcher;
283
static SettingsMajorMode settings( _button );
287
_modes[ mode++ ] = &switcher;
288
_modes[ mode++ ] = &settings;
291
// activate the current major mode
292
_modes[ _mode ]->activate();
239
button.add_event_at( 5, 1 );
240
button.add_event_at( 1000, 2 );
241
button.add_event_at( 4000, 3 );
244
Serial.begin( 9600 );
246
// set up major modes
247
static ModeSwitcher mode_switcher;
248
major_modes.push_back( &mode_switcher );
249
major_modes[ 0 ]->activate();
299
256
// if there has been a new pulse, we'll be resetting the display
300
bool reset = _new_pulse_at? true : false;
257
bool reset = new_pulse_at? true : false;
305
259
// only do this stuff at the start of a display cycle, to ensure
306
260
// that no state changes mid-display
309
// calculate segment times
310
calculate_segment_times();
312
266
// keep track of time
315
// perform button events
267
Time &time = Time::get_instance();
319
271
// draw this segment
320
draw_next_segment( reset );
272
drawNextSegment( reset );
274
// do we need to recalculate segment times?
276
calculateSegmentTimes();
322
278
// wait till it's time to draw the next segment
323
wait_till_end_of_segment( reset );
279
waitTillNextSegment( reset );