29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
79
80
#include "button.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
82
#include "switcher_major_mode.h"
86
85
//_____________________________________________________________________________
89
89
// when non-zero, the time (in microseconds) of a new fan pulse that
90
90
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
92
static unsigned long new_pulse_at = 0;
94
94
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
95
static unsigned long last_pulse_at = 0;
97
97
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
98
static unsigned long segment_step = 0;
100
100
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
101
static unsigned long segment_step_sub_step = 0;
102
static unsigned long segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
105
static Button button( 3 );
108
static int major_mode = 0;
110
#define MAX_MAJOR_MODES 5
113
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
117
115
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
124
switch( _minor_mode ) {
125
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
126
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
130
119
// perform button events
131
void do_button_events()
120
void doButtonEvents()
133
122
// loop through pending events
134
while( int event = _button.get_event() )
123
while( int event = button.get_event() )
140
switch( _major_mode ) {
142
switch( _minor_mode ) {
143
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
144
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
129
major_modes[ major_mode ]->press();
152
switch( _major_mode ) {
154
if( ++_minor_mode >= 3 )
156
switch( _minor_mode ) {
157
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
134
major_modes[ major_mode ]->long_press();
164
138
// looooong press (change major mode)
165
if( ++_major_mode > 0 )
167
switch( _major_mode ) {
168
case MAIN_MODE_IDX: _minor_mode = 0; break;
170
activate_minor_mode();
140
if( ++major_mode >= MAX_MAJOR_MODES )
142
} while( major_modes[ major_mode ] == NULL );
143
major_modes[ major_mode ]->activate();
177
151
// draw a display segment
178
void draw_next_segment( bool reset )
152
void drawNextSegment( bool reset )
180
154
// keep track of segment
181
155
#if CLOCK_FORWARD
186
160
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
191
switch( _major_mode ) {
193
switch( _minor_mode ) {
194
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
195
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
202
switch( _major_mode ) {
204
switch( _minor_mode ) {
205
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
206
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
207
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
164
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
165
if( reset ) drawer.draw_reset();
166
drawer.draw( segment );
212
168
#if CLOCK_FORWARD
213
169
if( ++segment >= NUM_SEGMENTS ) segment = 0;
220
176
// calculate time constants when a new pulse has occurred
221
void calculate_segment_times()
177
void calculateSegmentTimes()
223
179
// check for overflows, and only recalculate times if there isn't
224
180
// one (if there is, we'll just go with the last pulse's times)
225
if( _new_pulse_at > _last_pulse_at )
181
if( new_pulse_at > last_pulse_at )
227
183
// new segment stepping times
228
unsigned long delta = _new_pulse_at - _last_pulse_at;
229
_segment_step = delta / NUM_SEGMENTS;
230
_segment_step_sub = 0;
231
_segment_step_sub_step = delta % NUM_SEGMENTS;
184
unsigned long delta = new_pulse_at - last_pulse_at;
185
segment_step = delta / NUM_SEGMENTS;
186
segment_step_sub = 0;
187
segment_step_sub_step = delta % NUM_SEGMENTS;
234
190
// now we have dealt with this pulse, save the pulse time and
235
191
// clear new_pulse_at, ready for the next pulse
236
_last_pulse_at = _new_pulse_at;
192
last_pulse_at = new_pulse_at;
241
197
// wait until it is time to draw the next segment or a new pulse has
243
void wait_till_end_of_segment( bool reset )
199
void waitTillEndOfSegment( bool reset )
245
201
static unsigned long end_time = 0;
249
end_time = _last_pulse_at;
205
end_time = last_pulse_at;
251
207
// work out the time that this segment should be displayed until
252
end_time += _segment_step;
253
_segment_step_sub += _segment_step_sub_step;
254
if( _segment_step_sub >= NUM_SEGMENTS ) {
255
_segment_step_sub -= NUM_SEGMENTS;
208
end_time += segment_step;
209
segment_step_sub += segment_step_sub_step;
210
if( segment_step_sub >= NUM_SEGMENTS ) {
211
segment_step_sub -= NUM_SEGMENTS;
260
while( micros() < end_time && !_new_pulse_at );
216
while( micros() < end_time && !new_pulse_at );
264
220
// ISR to handle the pulses from the fan's tachiometer
265
void fan_pulse_handler()
221
void fanPulseHandler()
267
223
// the fan actually sends two pulses per revolution. These pulses
268
224
// may not be exactly evenly distributed around the rotation, so
292
248
// set up mode-switch button on pin 3
293
249
pinMode( 3, INPUT );
294
250
digitalWrite( 3, HIGH );
295
static int event_times[] = { 5, 500, 4000, 0 };
296
_button.set_event_times( event_times );
301
// activate the minor mode
302
switch( _major_mode ) {
303
case MAIN_MODE_IDX: activate_minor_mode(); break;
251
static int event_times[] = { 5, 1000, 4000, 0 };
252
button.set_event_times( event_times );
254
// set up major modes
255
static SwitcherMajorMode switcher_major_mode;
257
major_modes[ mode++ ] = &switcher_major_mode;
258
major_modes[ 0 ]->activate();
311
265
// if there has been a new pulse, we'll be resetting the display
312
bool reset = _new_pulse_at? true : false;
266
bool reset = new_pulse_at? true : false;
317
271
// only do this stuff at the start of a display cycle, to ensure
318
272
// that no state changes mid-display
321
275
// calculate segment times
322
calculate_segment_times();
276
calculateSegmentTimes();
324
278
// keep track of time
279
Time &time = Time::get_instance();
327
282
// perform button events
331
286
// draw this segment
332
draw_next_segment( reset );
287
drawNextSegment( reset );
334
289
// wait till it's time to draw the next segment
335
wait_till_end_of_segment( reset );
290
waitTillEndOfSegment( reset );