29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
79
80
#include "button.h"
82
#include "modes/analogue_clock.h"
83
#include "modes/digital_clock.h"
84
#include "modes/test_pattern.h"
85
#include "modes/settings_mode.h"
86
#include "modes/info_mode.h"
88
#include "text_renderer.h"
82
#include "switcher_major_mode.h"
91
85
//_____________________________________________________________________________
94
89
// when non-zero, the time (in microseconds) of a new fan pulse that
95
90
// has just occurred, which means that segment drawing needs to be
97
static unsigned long _new_pulse_at = 0;
92
static unsigned long new_pulse_at = 0;
99
94
// the time (in microseconds) when the last fan pulse occurred
100
static unsigned long _last_pulse_at = 0;
95
static unsigned long last_pulse_at = 0;
102
97
// duration (in microseconds) that a segment should be displayed
103
static unsigned long _segment_step = 0;
98
static unsigned long segment_step = 0;
105
100
// remainder after divisor and a tally of the remainders for each segment
106
static unsigned long _segment_step_sub_step = 0;
107
static unsigned long _segment_step_sub = 0;
101
static unsigned long segment_step_sub_step = 0;
102
static unsigned long segment_step_sub = 0;
110
static Button _button( 3 );
113
static int _major_mode = 0;
114
static int _minor_mode = 0;
116
#define MAIN_MODE_IDX 1
117
#define SETTINGS_MODE_IDX 0
119
#define ANALOGUE_CLOCK_IDX 0
120
#define DIGITAL_CLOCK_IDX 1
121
#define TEST_PATTERN_IDX 2
122
#define INFO_MODE_IDX 3
105
static Button button( 3 );
108
static int major_mode = 0;
110
#define MAX_MAJOR_MODES 5
113
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
124
115
//_____________________________________________________________________________
128
// activate the current minor mode
129
void activate_minor_mode()
135
// give the mode a chance to init
136
switch( _minor_mode ) {
137
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
138
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
139
case INFO_MODE_IDX: info_mode_activate(); break;
144
// activate major mode
145
void activate_major_mode()
152
_button.set_press_mode( _major_mode != SETTINGS_MODE_IDX );
154
// give the mode a chance to init
155
switch( _major_mode ) {
156
case MAIN_MODE_IDX: activate_minor_mode(); break;
157
case SETTINGS_MODE_IDX: settings_mode_activate(); break;
162
119
// perform button events
163
void do_button_events()
120
void doButtonEvents()
165
122
// loop through pending events
166
while( int event = _button.get_event() )
123
while( int event = button.get_event() )
172
switch( _major_mode ) {
174
switch( _minor_mode ) {
175
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
176
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
177
case INFO_MODE_IDX: info_mode_press(); break;
180
case SETTINGS_MODE_IDX: settings_mode_press(); break;
129
major_modes[ major_mode ]->press();
186
switch( _major_mode ) {
188
if( ++_minor_mode >= 3 )
190
activate_minor_mode();
192
case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
134
major_modes[ major_mode ]->long_press();
197
138
// looooong press (change major mode)
198
if( ++_major_mode > 1 )
200
activate_major_mode();
140
if( ++major_mode >= MAX_MAJOR_MODES )
142
} while( major_modes[ major_mode ] == NULL );
143
major_modes[ major_mode ]->activate();
207
151
// draw a display segment
208
void draw_next_segment( bool reset )
152
void drawNextSegment( bool reset )
210
154
// keep track of segment
211
155
#if CLOCK_FORWARD
216
160
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
219
// reset the text renderer
220
TextRenderer::reset_buffer();
224
switch( _major_mode ) {
226
switch( _minor_mode ) {
227
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
228
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
229
case INFO_MODE_IDX: info_mode_draw_reset(); break;
232
case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
235
// tell the text services we're starting a new frame
240
switch( _major_mode ) {
242
switch( _minor_mode ) {
243
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
244
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
245
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
246
case INFO_MODE_IDX: info_mode_draw( segment ); break;
249
case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
252
// draw any text that was rendered
253
TextRenderer::output_buffer();
164
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
165
if( reset ) drawer.draw_reset();
166
drawer.draw( segment );
255
168
#if CLOCK_FORWARD
256
169
if( ++segment >= NUM_SEGMENTS ) segment = 0;
263
176
// calculate time constants when a new pulse has occurred
264
void calculate_segment_times()
177
void calculateSegmentTimes()
266
179
// check for overflows, and only recalculate times if there isn't
267
180
// one (if there is, we'll just go with the last pulse's times)
268
if( _new_pulse_at > _last_pulse_at )
181
if( new_pulse_at > last_pulse_at )
270
183
// new segment stepping times
271
unsigned long delta = _new_pulse_at - _last_pulse_at;
272
_segment_step = delta / NUM_SEGMENTS;
273
_segment_step_sub = 0;
274
_segment_step_sub_step = delta % NUM_SEGMENTS;
184
unsigned long delta = new_pulse_at - last_pulse_at;
185
segment_step = delta / NUM_SEGMENTS;
186
segment_step_sub = 0;
187
segment_step_sub_step = delta % NUM_SEGMENTS;
277
190
// now we have dealt with this pulse, save the pulse time and
278
191
// clear new_pulse_at, ready for the next pulse
279
_last_pulse_at = _new_pulse_at;
192
last_pulse_at = new_pulse_at;
284
197
// wait until it is time to draw the next segment or a new pulse has
286
void wait_till_end_of_segment( bool reset )
199
void waitTillEndOfSegment( bool reset )
288
201
static unsigned long end_time = 0;
292
end_time = _last_pulse_at;
205
end_time = last_pulse_at;
294
207
// work out the time that this segment should be displayed until
295
end_time += _segment_step;
296
_segment_step_sub += _segment_step_sub_step;
297
if( _segment_step_sub >= NUM_SEGMENTS ) {
298
_segment_step_sub -= NUM_SEGMENTS;
208
end_time += segment_step;
209
segment_step_sub += segment_step_sub_step;
210
if( segment_step_sub >= NUM_SEGMENTS ) {
211
segment_step_sub -= NUM_SEGMENTS;
303
while( micros() < end_time && !_new_pulse_at );
216
while( micros() < end_time && !new_pulse_at );
307
// ISR to handle the pulses from the fan's tachometer
308
void fan_pulse_handler()
220
// ISR to handle the pulses from the fan's tachiometer
221
void fanPulseHandler()
310
223
// the fan actually sends two pulses per revolution. These pulses
311
224
// may not be exactly evenly distributed around the rotation, so
335
248
// set up mode-switch button on pin 3
336
249
pinMode( 3, INPUT );
337
250
digitalWrite( 3, HIGH );
338
static int event_times[] = { 5, 500, 4000, 0 };
339
_button.set_event_times( event_times );
344
// init text renderer
345
TextRenderer::init();
347
// activate the minor mode
348
activate_major_mode();
251
static int event_times[] = { 5, 1000, 4000, 0 };
252
button.set_event_times( event_times );
254
// set up major modes
255
static SwitcherMajorMode switcher_major_mode;
257
major_modes[ mode++ ] = &switcher_major_mode;
258
major_modes[ 0 ]->activate();
355
265
// if there has been a new pulse, we'll be resetting the display
356
bool reset = _new_pulse_at? true : false;
266
bool reset = new_pulse_at? true : false;
361
271
// only do this stuff at the start of a display cycle, to ensure
362
272
// that no state changes mid-display
365
275
// calculate segment times
366
calculate_segment_times();
276
calculateSegmentTimes();
368
278
// keep track of time
279
Time &time = Time::get_instance();
371
282
// perform button events
375
286
// draw this segment
376
draw_next_segment( reset );
287
drawNextSegment( reset );
378
289
// wait till it's time to draw the next segment
379
wait_till_end_of_segment( reset );
290
waitTillEndOfSegment( reset );