29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
79
80
#include "button.h"
82
#include "modes/switcher_major_mode.h"
83
#include "modes/settings_major_mode.h"
84
#include "modes/analogue_clock_mode.h"
85
#include "modes/digital_clock_mode.h"
86
#include "modes/info_mode.h"
87
#include "modes/test_pattern_mode.h"
89
#include "text_renderer.h"
82
#include "switcher_major_mode.h"
92
85
//_____________________________________________________________________________
95
89
// when non-zero, the time (in microseconds) of a new fan pulse that
96
90
// has just occurred, which means that segment drawing needs to be
98
static unsigned long _new_pulse_at = 0;
92
static unsigned long new_pulse_at = 0;
100
94
// the time (in microseconds) when the last fan pulse occurred
101
static unsigned long _last_pulse_at = 0;
95
static unsigned long last_pulse_at = 0;
103
97
// duration (in microseconds) that a segment should be displayed
104
static unsigned long _segment_step = 0;
98
static unsigned long segment_step = 0;
106
100
// remainder after divisor and a tally of the remainders for each segment
107
static unsigned long _segment_step_sub_step = 0;
108
static unsigned long _segment_step_sub = 0;
101
static unsigned long segment_step_sub_step = 0;
102
static unsigned long segment_step_sub = 0;
111
static Button _button( 3 );
105
static Button button( 3 );
108
static int major_mode = 0;
110
#define MAX_MAJOR_MODES 5
114
static MajorMode *_modes[ 3 ];
116
// current major mode
117
static int _mode = 0;
113
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
119
115
//_____________________________________________________________________________
122
119
// perform button events
123
void do_button_events()
120
void doButtonEvents()
125
122
// loop through pending events
126
while( int event = _button.get_event() )
123
while( int event = button.get_event() )
132
_modes[ _mode ]->press();
129
major_modes[ major_mode ]->press();
136
_modes[ _mode ]->long_press();
134
major_modes[ major_mode ]->long_press();
139
138
// looooong press (change major mode)
140
_modes[ _mode ]->deactivate();
141
if( !_modes[ ++_mode ] ) _mode = 0;
142
_modes[ _mode ]->activate();
140
if( ++major_mode >= MAX_MAJOR_MODES )
142
} while( major_modes[ major_mode ] == NULL );
143
major_modes[ major_mode ]->activate();
149
151
// draw a display segment
150
void draw_next_segment( bool reset )
152
void drawNextSegment( bool reset )
152
154
// keep track of segment
153
155
#if CLOCK_FORWARD
158
160
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
161
// reset the text renderer's buffer
162
TextRenderer::reset_buffer();
166
_modes[ _mode ]->draw_reset();
168
// tell the text services we're starting a new frame
173
_modes[ _mode ]->draw( segment );
176
Text::draw( segment );
178
// draw text rednerer's buffer
179
TextRenderer::output_buffer();
164
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
165
if( reset ) drawer.draw_reset();
166
drawer.draw( segment );
181
168
#if CLOCK_FORWARD
182
169
if( ++segment >= NUM_SEGMENTS ) segment = 0;
189
176
// calculate time constants when a new pulse has occurred
190
void calculate_segment_times()
177
void calculateSegmentTimes()
192
179
// check for overflows, and only recalculate times if there isn't
193
180
// one (if there is, we'll just go with the last pulse's times)
194
if( _new_pulse_at > _last_pulse_at )
181
if( new_pulse_at > last_pulse_at )
196
183
// new segment stepping times
197
unsigned long delta = _new_pulse_at - _last_pulse_at;
198
_segment_step = delta / NUM_SEGMENTS;
199
_segment_step_sub = 0;
200
_segment_step_sub_step = delta % NUM_SEGMENTS;
184
unsigned long delta = new_pulse_at - last_pulse_at;
185
segment_step = delta / NUM_SEGMENTS;
186
segment_step_sub = 0;
187
segment_step_sub_step = delta % NUM_SEGMENTS;
203
190
// now we have dealt with this pulse, save the pulse time and
204
191
// clear new_pulse_at, ready for the next pulse
205
_last_pulse_at = _new_pulse_at;
192
last_pulse_at = new_pulse_at;
210
197
// wait until it is time to draw the next segment or a new pulse has
212
void wait_till_end_of_segment( bool reset )
199
void waitTillEndOfSegment( bool reset )
214
201
static unsigned long end_time = 0;
218
end_time = _last_pulse_at;
205
end_time = last_pulse_at;
220
207
// work out the time that this segment should be displayed until
221
end_time += _segment_step;
222
_segment_step_sub += _segment_step_sub_step;
223
if( _segment_step_sub >= NUM_SEGMENTS ) {
224
_segment_step_sub -= NUM_SEGMENTS;
208
end_time += segment_step;
209
segment_step_sub += segment_step_sub_step;
210
if( segment_step_sub >= NUM_SEGMENTS ) {
211
segment_step_sub -= NUM_SEGMENTS;
229
while( micros() < end_time && !_new_pulse_at );
216
while( micros() < end_time && !new_pulse_at );
233
// ISR to handle the pulses from the fan's tachometer
234
void fan_pulse_handler()
220
// ISR to handle the pulses from the fan's tachiometer
221
void fanPulseHandler()
236
223
// the fan actually sends two pulses per revolution. These pulses
237
224
// may not be exactly evenly distributed around the rotation, so
253
// set up an interrupt handler on pin 2 to notice fan pulses
254
attachInterrupt( 0, fan_pulse_handler, RISING );
240
// set up an interrupt handler on pin 2 to nitice fan pulses
241
attachInterrupt( 0, fanPulseHandler, RISING );
255
242
digitalWrite( 2, HIGH );
257
244
// set up output pins (4 to 13) for the led array
261
248
// set up mode-switch button on pin 3
262
249
pinMode( 3, INPUT );
263
250
digitalWrite( 3, HIGH );
264
static int event_times[] = { 5, 500, 4000, 0 };
265
_button.set_event_times( event_times );
268
// Time::load_time();
270
// init text renderer
271
TextRenderer::init();
277
static SwitcherMajorMode switcher;
278
static SettingsMajorMode settings( _button );
251
static int event_times[] = { 5, 1000, 4000, 0 };
252
button.set_event_times( event_times );
254
// set up major modes
255
static SwitcherMajorMode switcher_major_mode;
282
_modes[ mode++ ] = &switcher;
283
_modes[ mode++ ] = &settings;
286
// activate the current major mode
287
_modes[ _mode ]->activate();
257
major_modes[ mode++ ] = &switcher_major_mode;
258
major_modes[ 0 ]->activate();
294
265
// if there has been a new pulse, we'll be resetting the display
295
bool reset = _new_pulse_at? true : false;
266
bool reset = new_pulse_at? true : false;
300
271
// only do this stuff at the start of a display cycle, to ensure
301
272
// that no state changes mid-display
304
275
// calculate segment times
305
calculate_segment_times();
276
calculateSegmentTimes();
307
278
// keep track of time
279
Time &time = Time::get_instance();
310
282
// perform button events
314
286
// draw this segment
315
draw_next_segment( reset );
287
drawNextSegment( reset );
317
289
// wait till it's time to draw the next segment
318
wait_till_end_of_segment( reset );
290
waitTillEndOfSegment( reset );