29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
79
80
#include "button.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
85
#include "settings_mode.h"
87
#include "text_renderer.h"
82
#include "switcher_major_mode.h"
90
85
//_____________________________________________________________________________
93
89
// when non-zero, the time (in microseconds) of a new fan pulse that
94
90
// has just occurred, which means that segment drawing needs to be
96
static unsigned long _new_pulse_at = 0;
92
static unsigned long new_pulse_at = 0;
98
94
// the time (in microseconds) when the last fan pulse occurred
99
static unsigned long _last_pulse_at = 0;
95
static unsigned long last_pulse_at = 0;
101
97
// duration (in microseconds) that a segment should be displayed
102
static unsigned long _segment_step = 0;
98
static unsigned long segment_step = 0;
104
100
// remainder after divisor and a tally of the remainders for each segment
105
static unsigned long _segment_step_sub_step = 0;
106
static unsigned long _segment_step_sub = 0;
101
static unsigned long segment_step_sub_step = 0;
102
static unsigned long segment_step_sub = 0;
109
static Button _button( 3 );
112
static int _major_mode = 0;
113
static int _minor_mode = 0;
115
#define MAIN_MODE_IDX 1
116
#define SETTINGS_MODE_IDX 0
118
#define ANALOGUE_CLOCK_IDX 0
119
#define DIGITAL_CLOCK_IDX 1
120
#define TEST_PATTERN_IDX 2
105
static Button button( 3 );
108
static int major_mode = 0;
110
#define MAX_MAJOR_MODES 5
113
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
122
115
//_____________________________________________________________________________
126
// activate the current minor mode
127
void activate_minor_mode()
133
// give the mode a chance to init
134
switch( _minor_mode ) {
135
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
136
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
141
// activate major mode
142
void activate_major_mode()
149
_button.set_press_mode( _major_mode != SETTINGS_MODE_IDX );
151
// give the mode a chance to init
152
switch( _major_mode ) {
153
case MAIN_MODE_IDX: activate_minor_mode(); break;
154
case SETTINGS_MODE_IDX: settings_mode_activate(); break;
159
119
// perform button events
160
void do_button_events()
120
void doButtonEvents()
162
122
// loop through pending events
163
while( int event = _button.get_event() )
123
while( int event = button.get_event() )
169
switch( _major_mode ) {
171
switch( _minor_mode ) {
172
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
173
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
176
case SETTINGS_MODE_IDX: settings_mode_press(); break;
129
major_modes[ major_mode ]->press();
182
switch( _major_mode ) {
184
if( ++_minor_mode >= 3 )
186
activate_minor_mode();
188
case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
134
major_modes[ major_mode ]->long_press();
193
138
// looooong press (change major mode)
194
if( ++_major_mode > 1 )
196
activate_major_mode();
140
if( ++major_mode >= MAX_MAJOR_MODES )
142
} while( major_modes[ major_mode ] == NULL );
143
major_modes[ major_mode ]->activate();
203
151
// draw a display segment
204
void draw_next_segment( bool reset )
152
void drawNextSegment( bool reset )
206
154
// keep track of segment
207
155
#if CLOCK_FORWARD
212
160
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
215
// reset the text renderer
216
TextRenderer::reset_buffer();
220
switch( _major_mode ) {
222
switch( _minor_mode ) {
223
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
224
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
227
case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
230
// tell the text services we're starting a new frame
235
switch( _major_mode ) {
237
switch( _minor_mode ) {
238
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
239
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
240
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
243
case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
246
// draw any text that was rendered
247
TextRenderer::output_buffer();
164
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
165
if( reset ) drawer.draw_reset();
166
drawer.draw( segment );
249
168
#if CLOCK_FORWARD
250
169
if( ++segment >= NUM_SEGMENTS ) segment = 0;
257
176
// calculate time constants when a new pulse has occurred
258
void calculate_segment_times()
177
void calculateSegmentTimes()
260
179
// check for overflows, and only recalculate times if there isn't
261
180
// one (if there is, we'll just go with the last pulse's times)
262
if( _new_pulse_at > _last_pulse_at )
181
if( new_pulse_at > last_pulse_at )
264
183
// new segment stepping times
265
unsigned long delta = _new_pulse_at - _last_pulse_at;
266
_segment_step = delta / NUM_SEGMENTS;
267
_segment_step_sub = 0;
268
_segment_step_sub_step = delta % NUM_SEGMENTS;
184
unsigned long delta = new_pulse_at - last_pulse_at;
185
segment_step = delta / NUM_SEGMENTS;
186
segment_step_sub = 0;
187
segment_step_sub_step = delta % NUM_SEGMENTS;
271
190
// now we have dealt with this pulse, save the pulse time and
272
191
// clear new_pulse_at, ready for the next pulse
273
_last_pulse_at = _new_pulse_at;
192
last_pulse_at = new_pulse_at;
278
197
// wait until it is time to draw the next segment or a new pulse has
280
void wait_till_end_of_segment( bool reset )
199
void waitTillEndOfSegment( bool reset )
282
201
static unsigned long end_time = 0;
286
end_time = _last_pulse_at;
205
end_time = last_pulse_at;
288
207
// work out the time that this segment should be displayed until
289
end_time += _segment_step;
290
_segment_step_sub += _segment_step_sub_step;
291
if( _segment_step_sub >= NUM_SEGMENTS ) {
292
_segment_step_sub -= NUM_SEGMENTS;
208
end_time += segment_step;
209
segment_step_sub += segment_step_sub_step;
210
if( segment_step_sub >= NUM_SEGMENTS ) {
211
segment_step_sub -= NUM_SEGMENTS;
297
while( micros() < end_time && !_new_pulse_at );
216
while( micros() < end_time && !new_pulse_at );
301
220
// ISR to handle the pulses from the fan's tachiometer
302
void fan_pulse_handler()
221
void fanPulseHandler()
304
223
// the fan actually sends two pulses per revolution. These pulses
305
224
// may not be exactly evenly distributed around the rotation, so
349
265
// if there has been a new pulse, we'll be resetting the display
350
bool reset = _new_pulse_at? true : false;
266
bool reset = new_pulse_at? true : false;
355
271
// only do this stuff at the start of a display cycle, to ensure
356
272
// that no state changes mid-display
359
275
// calculate segment times
360
calculate_segment_times();
276
calculateSegmentTimes();
362
278
// keep track of time
279
Time &time = Time::get_instance();
365
282
// perform button events
369
286
// draw this segment
370
draw_next_segment( reset );
287
drawNextSegment( reset );
372
289
// wait till it's time to draw the next segment
373
wait_till_end_of_segment( reset );
290
waitTillEndOfSegment( reset );