29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
79
80
#include "button.h"
82
#include "switcher_major_mode.h"
81
84
#include "Arduino.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
85
#include "settings_mode.h"
87
#include "text_renderer.h"
90
86
//_____________________________________________________________________________
93
90
// when non-zero, the time (in microseconds) of a new fan pulse that
94
91
// has just occurred, which means that segment drawing needs to be
96
static unsigned long _new_pulse_at = 0;
93
static unsigned long new_pulse_at = 0;
98
95
// the time (in microseconds) when the last fan pulse occurred
99
static unsigned long _last_pulse_at = 0;
96
static unsigned long last_pulse_at = 0;
101
98
// duration (in microseconds) that a segment should be displayed
102
static unsigned long _segment_step = 0;
99
static unsigned long segment_step = 0;
104
101
// remainder after divisor and a tally of the remainders for each segment
105
static unsigned long _segment_step_sub_step = 0;
106
static unsigned long _segment_step_sub = 0;
102
static unsigned long segment_step_sub_step = 0;
103
static unsigned long segment_step_sub = 0;
109
static Button _button( 3 );
112
static int _major_mode = 0;
113
static int _minor_mode = 0;
115
#define MAIN_MODE_IDX 1
116
#define SETTINGS_MODE_IDX 0
118
#define ANALOGUE_CLOCK_IDX 0
119
#define DIGITAL_CLOCK_IDX 1
120
#define TEST_PATTERN_IDX 2
106
static Button button( 3 );
109
static int major_mode = 0;
111
#define MAX_MAJOR_MODES 5
114
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
122
116
//_____________________________________________________________________________
126
// activate the current minor mode
127
void activate_minor_mode()
133
// give the mode a chance to init
134
switch( _minor_mode ) {
135
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
136
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
141
// activate major mode
142
void activate_major_mode()
148
// give the mode a chance to init
149
switch( _major_mode ) {
150
case MAIN_MODE_IDX: activate_minor_mode(); break;
151
case SETTINGS_MODE_IDX: settings_mode_activate(); break;
156
120
// perform button events
157
void do_button_events()
121
void doButtonEvents()
159
123
// loop through pending events
160
while( int event = _button.get_event() )
124
while( int event = button.get_event() )
166
switch( _major_mode ) {
168
switch( _minor_mode ) {
169
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
170
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
173
case SETTINGS_MODE_IDX: settings_mode_press(); break;
130
major_modes[ major_mode ]->press();
179
switch( _major_mode ) {
181
if( ++_minor_mode >= 3 )
183
activate_minor_mode();
185
case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
135
major_modes[ major_mode ]->long_press();
190
139
// looooong press (change major mode)
191
if( ++_major_mode > 1 )
193
activate_major_mode();
141
if( ++major_mode >= MAX_MAJOR_MODES )
143
} while( major_modes[ major_mode ] == NULL );
144
major_modes[ major_mode ]->activate();
200
152
// draw a display segment
201
void draw_next_segment( bool reset )
153
void drawNextSegment( bool reset )
203
155
// keep track of segment
204
156
#if CLOCK_FORWARD
209
161
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
212
// reset the text renderer
213
TextRenderer::reset_buffer();
217
switch( _major_mode ) {
219
switch( _minor_mode ) {
220
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
221
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
224
case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
227
// tell the text services we're starting a new frame
232
switch( _major_mode ) {
234
switch( _minor_mode ) {
235
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
236
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
237
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
240
case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
243
// draw any text that was rendered
244
TextRenderer::output_buffer();
165
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
166
if( reset ) drawer.draw_reset();
167
drawer.draw( segment );
246
169
#if CLOCK_FORWARD
247
170
if( ++segment >= NUM_SEGMENTS ) segment = 0;
254
177
// calculate time constants when a new pulse has occurred
255
void calculate_segment_times()
178
void calculateSegmentTimes()
257
180
// check for overflows, and only recalculate times if there isn't
258
181
// one (if there is, we'll just go with the last pulse's times)
259
if( _new_pulse_at > _last_pulse_at )
182
if( new_pulse_at > last_pulse_at )
261
184
// new segment stepping times
262
unsigned long delta = _new_pulse_at - _last_pulse_at;
263
_segment_step = delta / NUM_SEGMENTS;
264
_segment_step_sub = 0;
265
_segment_step_sub_step = delta % NUM_SEGMENTS;
185
unsigned long delta = new_pulse_at - last_pulse_at;
186
segment_step = delta / NUM_SEGMENTS;
187
segment_step_sub = 0;
188
segment_step_sub_step = delta % NUM_SEGMENTS;
268
191
// now we have dealt with this pulse, save the pulse time and
269
192
// clear new_pulse_at, ready for the next pulse
270
_last_pulse_at = _new_pulse_at;
193
last_pulse_at = new_pulse_at;
275
198
// wait until it is time to draw the next segment or a new pulse has
277
void wait_till_end_of_segment( bool reset )
200
void waitTillEndOfSegment( bool reset )
279
202
static unsigned long end_time = 0;
283
end_time = _last_pulse_at;
206
end_time = last_pulse_at;
285
208
// work out the time that this segment should be displayed until
286
end_time += _segment_step;
287
_segment_step_sub += _segment_step_sub_step;
288
if( _segment_step_sub >= NUM_SEGMENTS ) {
289
_segment_step_sub -= NUM_SEGMENTS;
209
end_time += segment_step;
210
segment_step_sub += segment_step_sub_step;
211
if( segment_step_sub >= NUM_SEGMENTS ) {
212
segment_step_sub -= NUM_SEGMENTS;
294
while( micros() < end_time && !_new_pulse_at );
217
while( micros() < end_time && !new_pulse_at );
298
221
// ISR to handle the pulses from the fan's tachiometer
299
void fan_pulse_handler()
222
void fanPulseHandler()
301
224
// the fan actually sends two pulses per revolution. These pulses
302
225
// may not be exactly evenly distributed around the rotation, so
343
266
// if there has been a new pulse, we'll be resetting the display
344
bool reset = _new_pulse_at? true : false;
267
bool reset = new_pulse_at? true : false;
349
272
// only do this stuff at the start of a display cycle, to ensure
350
273
// that no state changes mid-display
353
276
// calculate segment times
354
calculate_segment_times();
277
calculateSegmentTimes();
356
279
// keep track of time
280
Time &time = Time::get_instance();
359
283
// perform button events
363
287
// draw this segment
364
draw_next_segment( reset );
288
drawNextSegment( reset );
366
290
// wait till it's time to draw the next segment
367
wait_till_end_of_segment( reset );
291
waitTillEndOfSegment( reset );