29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
40
LEDs that turn on anf off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
56
position. You will need to experiment to dicsover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
79
80
#include "button.h"
82
#include "switcher_major_mode.h"
81
84
#include "Arduino.h"
82
#include "modes/switcher_major_mode.h"
83
#include "modes/settings_major_mode.h"
84
#include "modes/analogue_clock_mode.h"
85
#include "modes/digital_clock_mode.h"
86
#include "modes/info_mode.h"
87
#include "modes/test_pattern_mode.h"
89
#include "text_renderer.h"
92
86
//_____________________________________________________________________________
95
90
// when non-zero, the time (in microseconds) of a new fan pulse that
96
91
// has just occurred, which means that segment drawing needs to be
98
static unsigned long _new_pulse_at = 0;
93
static unsigned long new_pulse_at = 0;
100
95
// the time (in microseconds) when the last fan pulse occurred
101
static unsigned long _last_pulse_at = 0;
96
static unsigned long last_pulse_at = 0;
103
98
// duration (in microseconds) that a segment should be displayed
104
static unsigned long _segment_step = 0;
99
static unsigned long segment_step = 0;
106
101
// remainder after divisor and a tally of the remainders for each segment
107
static unsigned long _segment_step_sub_step = 0;
108
static unsigned long _segment_step_sub = 0;
102
static unsigned long segment_step_sub_step = 0;
103
static unsigned long segment_step_sub = 0;
111
static Button _button( 3 );
106
static Button button( 3 );
109
static int major_mode = 0;
111
#define MAX_MAJOR_MODES 5
114
static MajorMode *_modes[ 3 ];
116
// current major mode
117
static int _mode = 0;
119
// interupt handler's "ignore every other" flag
120
static bool _pulse_ignore = true;
114
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
122
116
//_____________________________________________________________________________
125
120
// perform button events
126
void do_button_events()
121
void doButtonEvents()
128
123
// loop through pending events
129
while( int event = _button.get_event() )
124
while( int event = button.get_event() )
135
_modes[ _mode ]->press();
130
major_modes[ major_mode ]->press();
139
_modes[ _mode ]->long_press();
135
major_modes[ major_mode ]->long_press();
142
139
// looooong press (change major mode)
143
_modes[ _mode ]->deactivate();
144
if( !_modes[ ++_mode ] ) _mode = 0;
145
_modes[ _mode ]->activate();
148
// switch display upside-down
149
_pulse_ignore = !_pulse_ignore;
141
if( ++major_mode >= MAX_MAJOR_MODES )
143
} while( major_modes[ major_mode ] == NULL );
144
major_modes[ major_mode ]->activate();
156
152
// draw a display segment
157
void draw_next_segment( bool reset )
153
void drawNextSegment( bool reset )
159
155
// keep track of segment
160
static int segment = 0;
161
156
#if CLOCK_FORWARD
157
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
162
158
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
160
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
164
161
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
167
// reset the text renderer's buffer
168
TextRenderer::reset_buffer();
172
_modes[ _mode ]->draw_reset();
174
// tell the text services we're starting a new frame
179
_modes[ _mode ]->draw( segment );
182
Text::draw( segment );
184
// draw text rednerer's buffer
185
TextRenderer::output_buffer();
165
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
166
if( reset ) drawer.draw_reset();
167
drawer.draw( segment );
187
169
#if CLOCK_FORWARD
188
170
if( ++segment >= NUM_SEGMENTS ) segment = 0;
195
177
// calculate time constants when a new pulse has occurred
196
void calculate_segment_times()
178
void calculateSegmentTimes()
198
180
// check for overflows, and only recalculate times if there isn't
199
181
// one (if there is, we'll just go with the last pulse's times)
200
if( _new_pulse_at > _last_pulse_at )
182
if( new_pulse_at > last_pulse_at )
202
184
// new segment stepping times
203
unsigned long delta = _new_pulse_at - _last_pulse_at;
204
_segment_step = delta / NUM_SEGMENTS;
205
_segment_step_sub = 0;
206
_segment_step_sub_step = delta % NUM_SEGMENTS;
185
unsigned long delta = new_pulse_at - last_pulse_at;
186
segment_step = delta / NUM_SEGMENTS;
187
segment_step_sub = 0;
188
segment_step_sub_step = delta % NUM_SEGMENTS;
209
191
// now we have dealt with this pulse, save the pulse time and
210
192
// clear new_pulse_at, ready for the next pulse
211
_last_pulse_at = _new_pulse_at;
193
last_pulse_at = new_pulse_at;
216
198
// wait until it is time to draw the next segment or a new pulse has
218
void wait_till_end_of_segment( bool reset )
200
void waitTillEndOfSegment( bool reset )
220
202
static unsigned long end_time = 0;
224
end_time = _last_pulse_at;
206
end_time = last_pulse_at;
226
208
// work out the time that this segment should be displayed until
227
end_time += _segment_step;
228
_segment_step_sub += _segment_step_sub_step;
229
if( _segment_step_sub >= NUM_SEGMENTS ) {
230
_segment_step_sub -= NUM_SEGMENTS;
209
end_time += segment_step;
210
segment_step_sub += segment_step_sub_step;
211
if( segment_step_sub >= NUM_SEGMENTS ) {
212
segment_step_sub -= NUM_SEGMENTS;
235
while( micros() < end_time && !_new_pulse_at );
217
while( micros() < end_time && !new_pulse_at );
239
// ISR to handle the pulses from the fan's tachometer
240
void fan_pulse_handler()
221
// ISR to handle the pulses from the fan's tachiometer
222
void fanPulseHandler()
242
224
// the fan actually sends two pulses per revolution. These pulses
243
225
// may not be exactly evenly distributed around the rotation, so
244
226
// we can't recalculate times on every pulse. Instead, we ignore
245
227
// every other pulse so timings are based on a complete rotation.
246
_pulse_ignore = !_pulse_ignore;
228
static bool ignore = true;
249
232
// set a new pulse time
250
_new_pulse_at = micros();
233
new_pulse_at = micros();
266
249
// set up mode-switch button on pin 3
267
250
pinMode( 3, INPUT );
268
251
digitalWrite( 3, HIGH );
269
static int event_times[] = { 10, 500, 2000, 4000, 0 };
270
_button.set_event_times( event_times );
275
// init text renderer
276
TextRenderer::init();
282
static SwitcherMajorMode switcher;
283
static SettingsMajorMode settings( _button );
252
static int event_times[] = { 5, 500, 4000, 0 };
253
button.set_event_times( event_times );
255
// set up major modes
256
static SwitcherMajorMode switcher_major_mode;
287
_modes[ mode++ ] = &switcher;
288
_modes[ mode++ ] = &settings;
291
// activate the current major mode
292
_modes[ _mode ]->activate();
258
major_modes[ mode++ ] = &switcher_major_mode;
259
major_modes[ 0 ]->activate();
299
266
// if there has been a new pulse, we'll be resetting the display
300
bool reset = _new_pulse_at? true : false;
267
bool reset = new_pulse_at? true : false;
305
272
// only do this stuff at the start of a display cycle, to ensure
306
273
// that no state changes mid-display
309
276
// calculate segment times
310
calculate_segment_times();
277
calculateSegmentTimes();
312
279
// keep track of time
280
Time &time = Time::get_instance();
315
283
// perform button events
319
287
// draw this segment
320
draw_next_segment( reset );
288
drawNextSegment( reset );
322
290
// wait till it's time to draw the next segment
323
wait_till_end_of_segment( reset );
291
waitTillEndOfSegment( reset );