/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-03-10 01:25:02 UTC
  • Revision ID: tim@ed.am-20120310012502-v0jwfjghpp63un6n
removed time singleton, not cause it saved much space, but cause i don't want singletons in this project!

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
1
2
/*
2
 
 * propeller-clock.pde
 
3
 * propeller-clock.ino
3
4
 *
4
 
 * Copyright (C) 2011 Tim Marston <edam@waxworlds.org>
 
5
 * Copyright (C) 2011 Tim Marston <tim@ed.am> and Dan Marston.
5
6
 *
6
7
 * This file is part of propeller-clock (hereafter referred to as "this
7
 
 * program"). See http://ed.am/software/arduino/propeller-clock for more
 
8
 * program"). See http://ed.am/dev/software/arduino/propeller-clock for more
8
9
 * information.
9
10
 *
10
11
 * This program is free software: you can redistribute it and/or modify
23
24
 
24
25
/******************************************************************************
25
26
 
26
 
  For a schematic, see propeller-clock.sch.
27
 
 
28
 
  Set up as follows:
29
 
 
30
 
  - a PC fan is wired up to the 12V supply.
31
 
 
32
 
  - the fan's SENSE (tachiometer) pin is connected to pin 2 on the
33
 
    arduino.
34
 
 
35
 
  - the pins 4 to 13 on the arduino should directly drive an LED (the
36
 
    LED on pin 4 is in the centre of the clock face and the LED on pin
37
 
    13 is at the outside.
38
 
 
39
 
  - if a longer hand (and a larger clock face) is desired, pin 4 can
40
 
    be used to indirectly drive (via a MOSFET) multiple LEDs which
41
 
    turn on and off in unison in the centre of the clock.
42
 
 
43
 
  - a button should be attached to pin 3 that grounds it when pressed.
44
 
 
45
 
  Implementation details:
46
 
 
47
 
  - the timing of the drawing of the clock face is recalculated with
48
 
    every rotation of the propeller (for maximum update speed).
49
 
 
50
 
  - pressing the button cycles between display modes
51
 
 
52
 
  - holding down the button for 2 seconds enters "set time" mode. In
53
 
    this mode, the fan must be held still and the LEDs will indicate
54
 
    what number is being entered for each time digit. Pressing the
55
 
    button increments the current digit. Holding it down moves to the
56
 
    next digit (or leaves "set time" mode when there are no more). In
57
 
    order, the digits (with accepted values) are: hours-tens (0 to 2),
58
 
    hours-ones (0 to 9), minutes-tens (0 to 5), minutes-ones (0 to 9).
 
27
Set up:
 
28
 
 
29
 * a PC fan is wired up to a 12V power supply
 
30
 
 
31
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
 
32
   arduino.
 
33
 
 
34
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
 
36
   13 is at the outside.
 
37
 
 
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
 
39
   used to indirectly drive a transistor which in turn drives several
 
40
   LEDs that turn on anf off in unison in the centre of the clock.
 
41
 
 
42
 * a button should be attached to pin 3 that grounds it when pressed.
 
43
 
 
44
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
 
45
 
 
46
Implementation details:
 
47
 
 
48
 * for a schematic, see ../project/propeller-clock.sch.
 
49
 
 
50
 * the timing of the drawing of the clock face is recalculated with
 
51
   every rotation of the propeller.
 
52
    
 
53
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
54
   software skips every other one. This means that the clock may
 
55
   appear upside-down if started with the propeller in the wrong
 
56
   position. You will need to experiment to dicsover the position that
 
57
   the propeller must be in when starting the clock.
 
58
    
 
59
Usage instructions:
 
60
 
 
61
 * pressing the button cycles between variations of the current
 
62
   display mode.
 
63
  
 
64
 * pressing and holding the button for a second cycles between display
 
65
   modes (e.g., analogue and digital).
 
66
 
 
67
 * pressing and holding the button for 5 seconds enters "time set"
 
68
   mode. In this mode, the following applies:
 
69
    - the field that is being set flashes
 
70
    - pressing the button increments the field currently being set
 
71
    - pressing and holding the button for a second cycles through the
 
72
      fields that can be set
 
73
    - pressing and holding the button for 5 seconds sets the time and
 
74
      exits "time set" mode
59
75
 
60
76
******************************************************************************/
61
77
 
62
 
 
63
 
#include <Bounce.h>
 
78
#include "config.h"
 
79
#include "button.h"
 
80
#include "time.h"
 
81
#include "Arduino.h"
 
82
#include "analogue_clock.h"
 
83
#include "digital_clock.h"
 
84
#include "test_pattern.h"
64
85
 
65
86
//_____________________________________________________________________________
66
87
//                                                                         data
67
88
 
68
 
 
69
89
// when non-zero, the time (in microseconds) of a new fan pulse that
70
90
// has just occurred, which means that segment drawing needs to be
71
91
// restarted
72
 
static unsigned long new_pulse_at = 0;
 
92
static unsigned long _new_pulse_at = 0;
73
93
 
74
94
// the time (in microseconds) when the last fan pulse occurred
75
 
static unsigned long last_pulse_at = 0;
 
95
static unsigned long _last_pulse_at = 0;
76
96
 
77
97
// duration (in microseconds) that a segment should be displayed
78
 
static unsigned long segment_step = 0;
 
98
static unsigned long _segment_step = 0;
79
99
 
80
100
// remainder after divisor and a tally of the remainders for each segment
81
 
static unsigned long segment_step_sub_step = 0;
82
 
static unsigned long segment_step_sub = 0;
83
 
 
84
 
// flag to indicate that the drawing mode should be cycled to the next one
85
 
static bool inc_draw_mode = false;
86
 
 
87
 
// a bounce-managed button
88
 
static Bounce button( 3, 5 );
89
 
 
90
 
// the time
91
 
static int time_hours = 0;
92
 
static int time_minutes = 0;
93
 
static int time_seconds = 0;
94
 
 
95
 
// number of segments in a full display (rotation) is 60 (one per
96
 
// second) times the desired number of sub-divisions of a second
97
 
#define NUM_SECOND_SEGMENTS 5
98
 
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
101
static unsigned long _segment_step_sub_step = 0;
 
102
static unsigned long _segment_step_sub = 0;
 
103
 
 
104
// the button
 
105
static Button _button( 3 );
 
106
 
 
107
// modes
 
108
static int _major_mode = 0;
 
109
static int _minor_mode = 0;
 
110
 
 
111
#define MAIN_MODE_IDX 0
 
112
 
 
113
#define ANALOGUE_CLOCK_IDX 0
 
114
#define DIGITAL_CLOCK_IDX 1
 
115
#define TEST_PATTERN_IDX 2
99
116
 
100
117
//_____________________________________________________________________________
101
118
//                                                                         code
102
119
 
103
120
 
104
 
// check for button presses
105
 
void checkButtons()
 
121
// activate the current minor mode
 
122
void activate_minor_mode()
106
123
{
107
 
        // update buttons
108
 
        button.update();
109
 
 
110
 
        // notice button presses
111
 
        if( button.risingEdge() )
112
 
                inc_draw_mode = true;
 
124
        switch( _minor_mode ) {
 
125
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
126
        }
113
127
}
114
128
 
115
 
 
116
 
// keep track of time
117
 
void trackTime()
 
129
// perform button events
 
130
void do_button_events()
118
131
{
119
 
        // previous time and any carried-over milliseconds
120
 
        static unsigned long last_time = millis();
121
 
        static unsigned long carry = 0;
122
 
 
123
 
        // how many milliseonds have elapsed since we last checked?
124
 
        unsigned long next_time = millis();
125
 
        unsigned long delta = next_time - last_time + carry;
126
 
 
127
 
        // update the previous time and carried-over milliseconds
128
 
        last_time = next_time;
129
 
        carry = delta % 1000;
130
 
 
131
 
        // add the seconds that have passed to the time
132
 
        time_seconds += delta / 1000;
133
 
        while( time_seconds >= 60 ) {
134
 
                time_seconds -= 60;
135
 
                time_minutes++;
136
 
                if( time_minutes >= 60 ) {
137
 
                        time_minutes -= 60;
138
 
                        time_hours++;
139
 
                        if( time_hours >= 24 )
140
 
                                time_hours -= 24;
 
132
        // loop through pending events
 
133
        while( int event = _button.get_event() )
 
134
        {
 
135
                switch( event )
 
136
                {
 
137
                case 1:
 
138
                        // short press
 
139
                        switch( _major_mode ) {
 
140
                        case MAIN_MODE_IDX:
 
141
                                switch( _minor_mode ) {
 
142
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
 
143
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
 
144
                                }
 
145
                                break;
 
146
                        }
 
147
                        break;
 
148
 
 
149
                case 2:
 
150
                        // long press
 
151
                        switch( _major_mode ) {
 
152
                        case MAIN_MODE_IDX:
 
153
                                if( ++_minor_mode >= 3 )
 
154
                                        _minor_mode = 0;
 
155
                                switch( _minor_mode ) {
 
156
                                case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
157
                                }
 
158
                                break;
 
159
                        }
 
160
                        break;
 
161
 
 
162
                case 3:
 
163
                        // looooong press (change major mode)
 
164
                        if( ++_major_mode > 0 )
 
165
                                _major_mode = 0;
 
166
                        switch( _major_mode ) {
 
167
                        case MAIN_MODE_IDX: _minor_mode = 0; break;
 
168
                        }
 
169
                        activate_minor_mode();
 
170
                        break;
141
171
                }
142
172
        }
143
173
}
144
174
 
145
175
 
146
 
// draw a segment for the test display
147
 
void drawNextSegment_test( bool reset )
 
176
// draw a display segment
 
177
void draw_next_segment( bool reset )
148
178
{
149
179
        // keep track of segment
150
 
        static unsigned int segment = 0;
151
 
        if( reset ) segment = 0;
152
 
        segment++;
153
 
 
154
 
        // turn on inside and outside LEDs
155
 
        digitalWrite( 4, HIGH );
156
 
        digitalWrite( 13, HIGH );
157
 
 
158
 
        // display segment number in binary across in the inside LEDs,
159
 
        // with the LED on pin 12 showing the least-significant bit
160
 
        for( int a = 0; a < 8; a++ )
161
 
                digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
162
 
}
163
 
 
164
 
 
165
 
// draw a segment for the time display
166
 
void drawNextSegment_time( bool reset )
167
 
{
168
 
        static unsigned int second = 0;
169
 
        static unsigned int segment = 0;
170
 
 
171
 
        // handle display reset
172
 
        if( reset ) {
173
 
                second = 0;
174
 
                segment = 0;
175
 
        }
176
 
 
177
 
        // what needs to be drawn?
178
 
        bool draw_tick = second % 5 == 0;
179
 
        bool draw_second = second == time_seconds;
180
 
        bool draw_minute = second == time_minute;
181
 
        bool draw_hour = second == time_hour;
182
 
 
183
 
        // set the LEDs
184
 
        digitalWrite( 13, HIGH );
185
 
        digitalWrite( 12, draw_tick || draw_minute );
186
 
        for( int a = 10; a <= 11; a++ )
187
 
                digitalWrite( a, draw_minute || draw_second );
188
 
        for( int a = 4; a <= 9; a++ )
189
 
                digitalWrite( 10, draw_minute | draw_second || draw_hour );
190
 
 
191
 
        // inc position
192
 
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
193
 
                segment = 0;
194
 
                second++;
195
 
        }
196
 
}
197
 
 
198
 
 
199
 
// draw a display segment
200
 
void drawNextSegment( bool reset )
201
 
{
202
 
        static int draw_mode = 0;
203
 
 
204
 
        // handle mode switch requests
205
 
        if( reset && inc_draw_mode ) {
206
 
                inc_draw_mode = false;
207
 
                draw_mode++;
208
 
                if( draw_mode >= 2 )
209
 
                        draw_mode = 0;
210
 
        }
211
 
 
212
 
        // draw the segment
213
 
        switch( draw_mode ) {
214
 
        case 0: drawNextSegment_test( reset ); break;
215
 
        case 1: drawNextSegment_time( reset ); break;
216
 
        }
 
180
#if CLOCK_FORWARD
 
181
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
182
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
183
#else
 
184
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
185
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
186
#endif
 
187
 
 
188
        // draw
 
189
        switch( _major_mode ) {
 
190
        case MAIN_MODE_IDX:
 
191
                switch( _minor_mode ) {
 
192
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
 
193
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
 
194
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
 
195
                }
 
196
                break;
 
197
        }
 
198
 
 
199
#if CLOCK_FORWARD
 
200
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
201
#else
 
202
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
203
#endif
217
204
}
218
205
 
219
206
 
220
207
// calculate time constants when a new pulse has occurred
221
 
void calculateSegmentTimes()
 
208
void calculate_segment_times()
222
209
{
223
210
        // check for overflows, and only recalculate times if there isn't
224
211
        // one (if there is, we'll just go with the last pulse's times)
225
 
        if( new_pulse_at > last_pulse_at )
 
212
        if( _new_pulse_at > _last_pulse_at )
226
213
        {
227
214
                // new segment stepping times
228
 
                unsigned long delta = new_pulse_at - last_pulse_at;
229
 
                segment_step = delta / NUM_SEGMENTS;
230
 
                segment_step_sub = 0;
231
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
215
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
216
                _segment_step = delta / NUM_SEGMENTS;
 
217
                _segment_step_sub = 0;
 
218
                _segment_step_sub_step = delta % NUM_SEGMENTS;
232
219
        }
233
220
 
234
221
        // now we have dealt with this pulse, save the pulse time and
235
222
        // clear new_pulse_at, ready for the next pulse
236
 
        last_pulse_at = new_pulse_at;
237
 
        new_pulse_at = 0;
 
223
        _last_pulse_at = _new_pulse_at;
 
224
        _new_pulse_at = 0;
238
225
}
239
226
 
240
227
 
241
228
// wait until it is time to draw the next segment or a new pulse has
242
229
// occurred
243
 
void waitTillNextSegment( bool reset )
 
230
void wait_till_end_of_segment( bool reset )
244
231
{
245
232
        static unsigned long end_time = 0;
246
233
 
247
234
        // handle reset
248
235
        if( reset )
249
 
                end_time = last_pulse_at;
 
236
                end_time = _last_pulse_at;
250
237
 
251
238
        // work out the time that this segment should be displayed until
252
 
        end_time += segment_step;
253
 
        segment_step_sub += segment_step_sub_step;
254
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
255
 
                segment_step_sub -= NUM_SEGMENTS;
 
239
        end_time += _segment_step;
 
240
        _segment_step_sub += _segment_step_sub_step;
 
241
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
242
                _segment_step_sub -= NUM_SEGMENTS;
256
243
                end_time++;
257
244
        }
258
245
 
259
246
        // wait
260
 
        while( micros() < end_time && !new_pulse_at );
 
247
        while( micros() < end_time && !_new_pulse_at );
261
248
}
262
249
 
263
250
 
264
251
// ISR to handle the pulses from the fan's tachiometer
265
 
void fanPulseHandler()
 
252
void fan_pulse_handler()
266
253
{
267
254
        // the fan actually sends two pulses per revolution. These pulses
268
255
        // may not be exactly evenly distributed around the rotation, so
273
260
        if( !ignore )
274
261
        {
275
262
                // set a new pulse time
276
 
                new_pulse_at = micros();
 
263
                _new_pulse_at = micros();
277
264
        }
278
265
}
279
266
 
282
269
void setup()
283
270
{
284
271
        // set up an interrupt handler on pin 2 to nitice fan pulses
285
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
272
        attachInterrupt( 0, fan_pulse_handler, RISING );
286
273
        digitalWrite( 2, HIGH );
287
274
  
288
275
        // set up output pins (4 to 13) for the led array
291
278
 
292
279
        // set up mode-switch button on pin 3
293
280
        pinMode( 3, INPUT );
294
 
 
295
 
        // serial comms
296
 
        Serial.begin( 9600 );
 
281
        digitalWrite( 3, HIGH );
 
282
        static int event_times[] = { 5, 500, 4000, 0 };
 
283
        _button.set_event_times( event_times );
 
284
 
 
285
        // get time from RTC
 
286
        Time::init();
 
287
 
 
288
        // activate the minor mode
 
289
        switch( _major_mode ) {
 
290
        case MAIN_MODE_IDX: activate_minor_mode(); break;
 
291
        }
297
292
}
298
293
 
299
294
 
301
296
void loop()
302
297
{
303
298
        // if there has been a new pulse, we'll be resetting the display
304
 
        bool reset = new_pulse_at? true : false;
 
299
        bool reset = _new_pulse_at? true : false;
 
300
 
 
301
        // update button
 
302
        _button.update();
305
303
 
306
304
        // only do this stuff at the start of a display cycle, to ensure
307
305
        // that no state changes mid-display
308
306
        if( reset )
309
307
        {
310
 
                // check buttons
311
 
                checkButtons();
 
308
                // calculate segment times
 
309
                calculate_segment_times();
312
310
 
313
311
                // keep track of time
314
 
                trackTime();
 
312
                Time::update();
 
313
 
 
314
                // perform button events
 
315
                do_button_events();
315
316
        }
316
317
 
317
318
        // draw this segment
318
 
        drawNextSegment( reset );
319
 
 
320
 
        // do we need to recalculate segment times?
321
 
        if( reset )
322
 
                calculateSegmentTimes();
 
319
        draw_next_segment( reset );
323
320
 
324
321
        // wait till it's time to draw the next segment
325
 
        waitTillNextSegment( reset );
 
322
        wait_till_end_of_segment( reset );
326
323
}