24
25
/******************************************************************************
26
For a schematic, see propeller-clock.sch.
30
- a PC fan is wired up to the 12V supply.
32
- the fan's SENSE (tachiometer) pin is connected to pin 2 on the
35
- the pins 4 to 13 on the arduino should directly drive an LED (the
36
LED on pin 4 is in the centre of the clock face and the LED on pin
39
- if a longer hand (and a larger clock face) is desired, pin 4 can
40
be used to indirectly drive (via a MOSFET) multiple LEDs which
41
turn on and off in unison in the centre of the clock.
43
- a button should be attached to pin 3 that grounds it when pressed.
45
Implementation details:
47
- the timing of the drawing of the clock face is recalculated with
48
every rotation of the propeller (for maximum update speed).
50
- pressing the button cycles between display modes
52
- holding down the button for 2 seconds enters "set time" mode. In
53
this mode, the fan must be held still and the LEDs will indicate
54
what number is being entered for each time digit. Pressing the
55
button increments the current digit. Holding it down moves to the
56
next digit (or leaves "set time" mode when there are no more). In
57
order, the digits (with accepted values) are: hours-tens (0 to 2),
58
hours-ones (0 to 9), minutes-tens (0 to 5), minutes-ones (0 to 9).
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
35
LED on pin 4 is in the centre of the clock face and the LED on pin
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
46
Implementation details:
48
* for a schematic, see ../project/propeller-clock.sch.
50
* the timing of the drawing of the clock face is recalculated with
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
54
software skips every other one. This means that the clock may
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
57
the propeller must be in when starting the clock.
61
* pressing the button cycles between variations of the current
64
* pressing and holding the button for a second cycles between display
65
modes (e.g., analogue and digital).
67
* pressing and holding the button for 5 seconds enters "time set"
68
mode. In this mode, the following applies:
69
- the field that is being set flashes
70
- pressing the button increments the field currently being set
71
- pressing and holding the button for a second cycles through the
72
fields that can be set
73
- pressing and holding the button for 5 seconds sets the time and
60
76
******************************************************************************/
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
65
86
//_____________________________________________________________________________
69
89
// when non-zero, the time (in microseconds) of a new fan pulse that
70
90
// has just occurred, which means that segment drawing needs to be
72
static unsigned long new_pulse_at = 0;
92
static unsigned long _new_pulse_at = 0;
74
94
// the time (in microseconds) when the last fan pulse occurred
75
static unsigned long last_pulse_at = 0;
95
static unsigned long _last_pulse_at = 0;
77
97
// duration (in microseconds) that a segment should be displayed
78
static unsigned long segment_step = 0;
98
static unsigned long _segment_step = 0;
80
100
// remainder after divisor and a tally of the remainders for each segment
81
static unsigned long segment_step_sub_step = 0;
82
static unsigned long segment_step_sub = 0;
84
// flag to indicate that the drawing mode should be cycled to the next one
85
static bool inc_draw_mode = false;
87
// a bounce-managed button
88
static Bounce button( 3, 5 );
91
static int time_hours = 0;
92
static int time_minutes = 0;
93
static int time_seconds = 0;
95
// number of segments in a full display (rotation) is 60 (one per
96
// second) times the desired number of sub-divisions of a second
97
#define NUM_SECOND_SEGMENTS 5
98
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
100
117
//_____________________________________________________________________________
104
// check for button presses
121
// activate the current minor mode
122
void activate_minor_mode()
110
// notice button presses
111
if( button.risingEdge() )
112
inc_draw_mode = true;
124
switch( _minor_mode ) {
125
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
116
// keep track of time
129
// perform button events
130
void do_button_events()
119
// previous time and any carried-over milliseconds
120
static unsigned long last_time = millis();
121
static unsigned long carry = 0;
123
// how many milliseonds have elapsed since we last checked?
124
unsigned long next_time = millis();
125
unsigned long delta = next_time - last_time + carry;
127
// update the previous time and carried-over milliseconds
128
last_time = next_time;
129
carry = delta % 1000;
131
// add the seconds that have passed to the time
132
time_seconds += delta / 1000;
133
while( time_seconds >= 60 ) {
136
if( time_minutes >= 60 ) {
139
if( time_hours >= 24 )
132
// loop through pending events
133
while( int event = _button.get_event() )
139
switch( _major_mode ) {
141
switch( _minor_mode ) {
142
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
143
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
151
switch( _major_mode ) {
153
if( ++_minor_mode >= 3 )
155
switch( _minor_mode ) {
156
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
163
// looooong press (change major mode)
164
if( ++_major_mode > 0 )
166
switch( _major_mode ) {
167
case MAIN_MODE_IDX: _minor_mode = 0; break;
169
activate_minor_mode();
146
// draw a segment for the test display
147
void drawNextSegment_test( bool reset )
176
// draw a display segment
177
void draw_next_segment( bool reset )
149
179
// keep track of segment
150
static unsigned int segment = 0;
151
if( reset ) segment = 0;
154
// turn on inside and outside LEDs
155
digitalWrite( 4, HIGH );
156
digitalWrite( 13, HIGH );
158
// display segment number in binary across in the inside LEDs,
159
// with the LED on pin 12 showing the least-significant bit
160
for( int a = 0; a < 8; a++ )
161
digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
165
// draw a segment for the time display
166
void drawNextSegment_time( bool reset )
168
static unsigned int second = 0;
169
static unsigned int segment = 0;
171
// handle display reset
177
// what needs to be drawn?
178
bool draw_tick = !segment && second % 5 == 0;
179
bool draw_second = !segment && second == time_seconds;
180
bool draw_minute = !segment && second == time_minute;
181
bool draw_hour = !segment && second == time_hour;
184
digitalWrite( 13, HIGH );
185
digitalWrite( 12, draw_tick || draw_minute );
186
for( int a = 10; a <= 11; a++ )
187
digitalWrite( a, draw_minute || draw_second );
188
for( int a = 4; a <= 9; a++ )
189
digitalWrite( 10, draw_minute | draw_second || draw_hour );
192
if( ++segment >= NUM_SECOND_SEGMENTS ) {
199
// draw a display segment
200
void drawNextSegment( bool reset )
202
static int draw_mode = 0;
204
// handle mode switch requests
205
if( reset && inc_draw_mode ) {
206
inc_draw_mode = false;
213
switch( draw_mode ) {
214
case 0: drawNextSegment_test( reset ); break;
215
case 1: drawNextSegment_time( reset ); break;
181
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
182
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
184
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
185
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
189
switch( _major_mode ) {
191
switch( _minor_mode ) {
192
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
193
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
194
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
200
if( ++segment >= NUM_SEGMENTS ) segment = 0;
202
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
220
207
// calculate time constants when a new pulse has occurred
221
void calculateSegmentTimes()
208
void calculate_segment_times()
223
210
// check for overflows, and only recalculate times if there isn't
224
211
// one (if there is, we'll just go with the last pulse's times)
225
if( new_pulse_at > last_pulse_at )
212
if( _new_pulse_at > _last_pulse_at )
227
214
// new segment stepping times
228
unsigned long delta = new_pulse_at - last_pulse_at;
229
segment_step = delta / NUM_SEGMENTS;
230
segment_step_sub = 0;
231
segment_step_sub_step = delta % NUM_SEGMENTS;
215
unsigned long delta = _new_pulse_at - _last_pulse_at;
216
_segment_step = delta / NUM_SEGMENTS;
217
_segment_step_sub = 0;
218
_segment_step_sub_step = delta % NUM_SEGMENTS;
234
221
// now we have dealt with this pulse, save the pulse time and
235
222
// clear new_pulse_at, ready for the next pulse
236
last_pulse_at = new_pulse_at;
223
_last_pulse_at = _new_pulse_at;
241
228
// wait until it is time to draw the next segment or a new pulse has
243
void waitTillNextSegment( bool reset )
230
void wait_till_end_of_segment( bool reset )
245
232
static unsigned long end_time = 0;
249
end_time = last_pulse_at;
236
end_time = _last_pulse_at;
251
238
// work out the time that this segment should be displayed until
252
end_time += segment_step;
253
segment_step_sub += segment_step_sub_step;
254
if( segment_step_sub >= NUM_SEGMENTS ) {
255
segment_step_sub -= NUM_SEGMENTS;
239
end_time += _segment_step;
240
_segment_step_sub += _segment_step_sub_step;
241
if( _segment_step_sub >= NUM_SEGMENTS ) {
242
_segment_step_sub -= NUM_SEGMENTS;
260
while( micros() < end_time && !new_pulse_at );
247
while( micros() < end_time && !_new_pulse_at );
264
251
// ISR to handle the pulses from the fan's tachiometer
265
void fanPulseHandler()
252
void fan_pulse_handler()
267
254
// the fan actually sends two pulses per revolution. These pulses
268
255
// may not be exactly evenly distributed around the rotation, so