76
76
******************************************************************************/
78
78
#include "config.h"
80
79
#include "button.h"
82
#include "switcher_major_mode.h"
84
81
#include "Arduino.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
86
86
//_____________________________________________________________________________
90
89
// when non-zero, the time (in microseconds) of a new fan pulse that
91
90
// has just occurred, which means that segment drawing needs to be
93
static unsigned long new_pulse_at = 0;
92
static unsigned long _new_pulse_at = 0;
95
94
// the time (in microseconds) when the last fan pulse occurred
96
static unsigned long last_pulse_at = 0;
95
static unsigned long _last_pulse_at = 0;
98
97
// duration (in microseconds) that a segment should be displayed
99
static unsigned long segment_step = 0;
98
static unsigned long _segment_step = 0;
101
100
// remainder after divisor and a tally of the remainders for each segment
102
static unsigned long segment_step_sub_step = 0;
103
static unsigned long segment_step_sub = 0;
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
106
static Button button( 3 );
109
static int major_mode = 0;
111
#define MAX_MAJOR_MODES 5
114
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
116
117
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
124
switch( _minor_mode ) {
125
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
120
129
// perform button events
121
void doButtonEvents()
130
void do_button_events()
123
132
// loop through pending events
124
while( int event = button.get_event() )
133
while( int event = _button.get_event() )
130
major_modes[ major_mode ]->press();
139
switch( _major_mode ) {
141
switch( _minor_mode ) {
142
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
143
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
135
major_modes[ major_mode ]->long_press();
151
switch( _major_mode ) {
153
if( ++_minor_mode >= 3 )
155
switch( _minor_mode ) {
156
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
139
163
// looooong press (change major mode)
141
if( ++major_mode >= MAX_MAJOR_MODES )
143
} while( major_modes[ major_mode ] == NULL );
144
major_modes[ major_mode ]->activate();
164
if( ++_major_mode > 0 )
166
switch( _major_mode ) {
167
case MAIN_MODE_IDX: _minor_mode = 0; break;
169
activate_minor_mode();
152
176
// draw a display segment
153
void drawNextSegment( bool reset )
177
void draw_next_segment( bool reset )
155
179
// keep track of segment
156
180
#if CLOCK_FORWARD
177
207
// calculate time constants when a new pulse has occurred
178
void calculateSegmentTimes()
208
void calculate_segment_times()
180
210
// check for overflows, and only recalculate times if there isn't
181
211
// one (if there is, we'll just go with the last pulse's times)
182
if( new_pulse_at > last_pulse_at )
212
if( _new_pulse_at > _last_pulse_at )
184
214
// new segment stepping times
185
unsigned long delta = new_pulse_at - last_pulse_at;
186
segment_step = delta / NUM_SEGMENTS;
187
segment_step_sub = 0;
188
segment_step_sub_step = delta % NUM_SEGMENTS;
215
unsigned long delta = _new_pulse_at - _last_pulse_at;
216
_segment_step = delta / NUM_SEGMENTS;
217
_segment_step_sub = 0;
218
_segment_step_sub_step = delta % NUM_SEGMENTS;
191
221
// now we have dealt with this pulse, save the pulse time and
192
222
// clear new_pulse_at, ready for the next pulse
193
last_pulse_at = new_pulse_at;
223
_last_pulse_at = _new_pulse_at;
198
228
// wait until it is time to draw the next segment or a new pulse has
200
void waitTillEndOfSegment( bool reset )
230
void wait_till_end_of_segment( bool reset )
202
232
static unsigned long end_time = 0;
206
end_time = last_pulse_at;
236
end_time = _last_pulse_at;
208
238
// work out the time that this segment should be displayed until
209
end_time += segment_step;
210
segment_step_sub += segment_step_sub_step;
211
if( segment_step_sub >= NUM_SEGMENTS ) {
212
segment_step_sub -= NUM_SEGMENTS;
239
end_time += _segment_step;
240
_segment_step_sub += _segment_step_sub_step;
241
if( _segment_step_sub >= NUM_SEGMENTS ) {
242
_segment_step_sub -= NUM_SEGMENTS;
217
while( micros() < end_time && !new_pulse_at );
247
while( micros() < end_time && !_new_pulse_at );
221
251
// ISR to handle the pulses from the fan's tachiometer
222
void fanPulseHandler()
252
void fan_pulse_handler()
224
254
// the fan actually sends two pulses per revolution. These pulses
225
255
// may not be exactly evenly distributed around the rotation, so
250
280
pinMode( 3, INPUT );
251
281
digitalWrite( 3, HIGH );
252
282
static int event_times[] = { 5, 500, 4000, 0 };
253
button.set_event_times( event_times );
255
// set up major modes
256
static SwitcherMajorMode switcher_major_mode;
258
major_modes[ mode++ ] = &switcher_major_mode;
259
major_modes[ 0 ]->activate();
283
_button.set_event_times( event_times );
288
// activate the minor mode
289
switch( _major_mode ) {
290
case MAIN_MODE_IDX: activate_minor_mode(); break;
266
298
// if there has been a new pulse, we'll be resetting the display
267
bool reset = new_pulse_at? true : false;
299
bool reset = _new_pulse_at? true : false;
272
304
// only do this stuff at the start of a display cycle, to ensure
273
305
// that no state changes mid-display
276
308
// calculate segment times
277
calculateSegmentTimes();
309
calculate_segment_times();
279
311
// keep track of time
280
Time &time = Time::get_instance();
283
314
// perform button events
287
318
// draw this segment
288
drawNextSegment( reset );
319
draw_next_segment( reset );
290
321
// wait till it's time to draw the next segment
291
waitTillEndOfSegment( reset );
322
wait_till_end_of_segment( reset );