/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-03-10 12:31:16 UTC
  • Revision ID: tim@ed.am-20120310123116-l348p5btgecmdj1q
added realtime clock test

Show diffs side-by-side

added added

removed removed

76
76
******************************************************************************/
77
77
 
78
78
#include "config.h"
79
 
#include "display.h"
80
79
#include "button.h"
81
80
#include "time.h"
82
 
#include "switcher_major_mode.h"
83
 
#include "drawer.h"
 
81
#include "Arduino.h"
 
82
#include "analogue_clock.h"
 
83
#include "digital_clock.h"
 
84
#include "test_pattern.h"
84
85
 
85
86
//_____________________________________________________________________________
86
87
//                                                                         data
87
88
 
88
 
 
89
89
// when non-zero, the time (in microseconds) of a new fan pulse that
90
90
// has just occurred, which means that segment drawing needs to be
91
91
// restarted
92
 
static unsigned long new_pulse_at = 0;
 
92
static unsigned long _new_pulse_at = 0;
93
93
 
94
94
// the time (in microseconds) when the last fan pulse occurred
95
 
static unsigned long last_pulse_at = 0;
 
95
static unsigned long _last_pulse_at = 0;
96
96
 
97
97
// duration (in microseconds) that a segment should be displayed
98
 
static unsigned long segment_step = 0;
 
98
static unsigned long _segment_step = 0;
99
99
 
100
100
// remainder after divisor and a tally of the remainders for each segment
101
 
static unsigned long segment_step_sub_step = 0;
102
 
static unsigned long segment_step_sub = 0;
 
101
static unsigned long _segment_step_sub_step = 0;
 
102
static unsigned long _segment_step_sub = 0;
103
103
 
104
104
// the button
105
 
static Button button( 3 );
106
 
 
107
 
// major mode
108
 
static int major_mode = 0;
109
 
 
110
 
#define MAX_MAJOR_MODES 5
111
 
 
112
 
// major modes
113
 
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
 
105
static Button _button( 3 );
 
106
 
 
107
// modes
 
108
static int _major_mode = 0;
 
109
static int _minor_mode = 0;
 
110
 
 
111
#define MAIN_MODE_IDX 0
 
112
 
 
113
#define ANALOGUE_CLOCK_IDX 0
 
114
#define DIGITAL_CLOCK_IDX 1
 
115
#define TEST_PATTERN_IDX 2
114
116
 
115
117
//_____________________________________________________________________________
116
118
//                                                                         code
117
119
 
118
120
 
 
121
// activate the current minor mode
 
122
void activate_minor_mode()
 
123
{
 
124
        switch( _minor_mode ) {
 
125
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
126
        }
 
127
}
 
128
 
119
129
// perform button events
120
 
void doButtonEvents()
 
130
void do_button_events()
121
131
{
122
132
        // loop through pending events
123
 
        while( int event = button.get_event() )
 
133
        while( int event = _button.get_event() )
124
134
        {
125
135
                switch( event )
126
136
                {
127
137
                case 1:
128
138
                        // short press
129
 
                        major_modes[ major_mode ]->press();
 
139
                        switch( _major_mode ) {
 
140
                        case MAIN_MODE_IDX:
 
141
                                switch( _minor_mode ) {
 
142
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
 
143
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
 
144
                                }
 
145
                                break;
 
146
                        }
130
147
                        break;
131
148
 
132
149
                case 2:
133
150
                        // long press
134
 
                        major_modes[ major_mode ]->long_press();
 
151
                        switch( _major_mode ) {
 
152
                        case MAIN_MODE_IDX:
 
153
                                if( ++_minor_mode >= 3 )
 
154
                                        _minor_mode = 0;
 
155
                                switch( _minor_mode ) {
 
156
                                case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
157
                                }
 
158
                                break;
 
159
                        }
135
160
                        break;
136
161
 
137
162
                case 3:
138
163
                        // looooong press (change major mode)
139
 
                        do {
140
 
                                if( ++major_mode >= MAX_MAJOR_MODES )
141
 
                                        major_mode = 0;
142
 
                        } while( major_modes[ major_mode ] == NULL );
143
 
                        major_modes[ major_mode ]->activate();
 
164
                        if( ++_major_mode > 0 )
 
165
                                _major_mode = 0;
 
166
                        switch( _major_mode ) {
 
167
                        case MAIN_MODE_IDX: _minor_mode = 0; break;
 
168
                        }
 
169
                        activate_minor_mode();
144
170
                        break;
145
 
 
146
171
                }
147
172
        }
148
173
}
149
174
 
150
175
 
151
176
// draw a display segment
152
 
void drawNextSegment( bool reset )
 
177
void draw_next_segment( bool reset )
153
178
{
154
179
        // keep track of segment
155
180
#if CLOCK_FORWARD
161
186
#endif
162
187
 
163
188
        // draw
164
 
        Drawer &drawer = major_modes[ major_mode ]->get_drawer();
165
 
        if( reset ) drawer.draw_reset();
166
 
        drawer.draw( segment );
 
189
        switch( _major_mode ) {
 
190
        case MAIN_MODE_IDX:
 
191
                switch( _minor_mode ) {
 
192
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
 
193
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
 
194
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
 
195
                }
 
196
                break;
 
197
        }
167
198
 
168
199
#if CLOCK_FORWARD
169
200
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
174
205
 
175
206
 
176
207
// calculate time constants when a new pulse has occurred
177
 
void calculateSegmentTimes()
 
208
void calculate_segment_times()
178
209
{
179
210
        // check for overflows, and only recalculate times if there isn't
180
211
        // one (if there is, we'll just go with the last pulse's times)
181
 
        if( new_pulse_at > last_pulse_at )
 
212
        if( _new_pulse_at > _last_pulse_at )
182
213
        {
183
214
                // new segment stepping times
184
 
                unsigned long delta = new_pulse_at - last_pulse_at;
185
 
                segment_step = delta / NUM_SEGMENTS;
186
 
                segment_step_sub = 0;
187
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
215
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
216
                _segment_step = delta / NUM_SEGMENTS;
 
217
                _segment_step_sub = 0;
 
218
                _segment_step_sub_step = delta % NUM_SEGMENTS;
188
219
        }
189
220
 
190
221
        // now we have dealt with this pulse, save the pulse time and
191
222
        // clear new_pulse_at, ready for the next pulse
192
 
        last_pulse_at = new_pulse_at;
193
 
        new_pulse_at = 0;
 
223
        _last_pulse_at = _new_pulse_at;
 
224
        _new_pulse_at = 0;
194
225
}
195
226
 
196
227
 
197
228
// wait until it is time to draw the next segment or a new pulse has
198
229
// occurred
199
 
void waitTillEndOfSegment( bool reset )
 
230
void wait_till_end_of_segment( bool reset )
200
231
{
201
232
        static unsigned long end_time = 0;
202
233
 
203
234
        // handle reset
204
235
        if( reset )
205
 
                end_time = last_pulse_at;
 
236
                end_time = _last_pulse_at;
206
237
 
207
238
        // work out the time that this segment should be displayed until
208
 
        end_time += segment_step;
209
 
        segment_step_sub += segment_step_sub_step;
210
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
211
 
                segment_step_sub -= NUM_SEGMENTS;
 
239
        end_time += _segment_step;
 
240
        _segment_step_sub += _segment_step_sub_step;
 
241
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
242
                _segment_step_sub -= NUM_SEGMENTS;
212
243
                end_time++;
213
244
        }
214
245
 
215
246
        // wait
216
 
        while( micros() < end_time && !new_pulse_at );
 
247
        while( micros() < end_time && !_new_pulse_at );
217
248
}
218
249
 
219
250
 
220
251
// ISR to handle the pulses from the fan's tachiometer
221
 
void fanPulseHandler()
 
252
void fan_pulse_handler()
222
253
{
223
254
        // the fan actually sends two pulses per revolution. These pulses
224
255
        // may not be exactly evenly distributed around the rotation, so
229
260
        if( !ignore )
230
261
        {
231
262
                // set a new pulse time
232
 
                new_pulse_at = micros();
 
263
                _new_pulse_at = micros();
233
264
        }
234
265
}
235
266
 
238
269
void setup()
239
270
{
240
271
        // set up an interrupt handler on pin 2 to nitice fan pulses
241
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
272
        attachInterrupt( 0, fan_pulse_handler, RISING );
242
273
        digitalWrite( 2, HIGH );
243
274
  
244
275
        // set up output pins (4 to 13) for the led array
248
279
        // set up mode-switch button on pin 3
249
280
        pinMode( 3, INPUT );
250
281
        digitalWrite( 3, HIGH );
251
 
        static int event_times[] = { 5, 1000, 4000, 0 };
252
 
        button.set_event_times( event_times );
253
 
 
254
 
        // set up major modes
255
 
        static SwitcherMajorMode switcher_major_mode;
256
 
        int mode = 0;
257
 
        major_modes[ mode++ ] = &switcher_major_mode;
258
 
        major_modes[ 0 ]->activate();
 
282
        static int event_times[] = { 5, 500, 4000, 0 };
 
283
        _button.set_event_times( event_times );
 
284
 
 
285
        // get time from RTC
 
286
        Time::init();
 
287
 
 
288
        // activate the minor mode
 
289
        switch( _major_mode ) {
 
290
        case MAIN_MODE_IDX: activate_minor_mode(); break;
 
291
        }
259
292
}
260
293
 
261
294
 
263
296
void loop()
264
297
{
265
298
        // if there has been a new pulse, we'll be resetting the display
266
 
        bool reset = new_pulse_at? true : false;
 
299
        bool reset = _new_pulse_at? true : false;
267
300
 
268
301
        // update button
269
 
        button.update();
 
302
        _button.update();
270
303
 
271
304
        // only do this stuff at the start of a display cycle, to ensure
272
305
        // that no state changes mid-display
273
306
        if( reset )
274
307
        {
275
308
                // calculate segment times
276
 
                calculateSegmentTimes();
 
309
                calculate_segment_times();
277
310
 
278
311
                // keep track of time
279
 
                Time &time = Time::get_instance();
280
 
                time.update();
 
312
                Time::update();
281
313
 
282
314
                // perform button events
283
 
                doButtonEvents();
 
315
                do_button_events();
284
316
        }
285
317
 
286
318
        // draw this segment
287
 
        drawNextSegment( reset );
 
319
        draw_next_segment( reset );
288
320
 
289
321
        // wait till it's time to draw the next segment
290
 
        waitTillEndOfSegment( reset );
 
322
        wait_till_end_of_segment( reset );
291
323
}