/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-03-10 12:56:55 UTC
  • Revision ID: tim@ed.am-20120310125655-z72qh4bqou2byi2r
added frame reset code and inited minor mode flavours on mode activation

Show diffs side-by-side

added added

removed removed

Lines of Context:
28
28
 
29
29
 * a PC fan is wired up to a 12V power supply
30
30
 
31
 
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
32
 
   arduino.
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
33
33
 
34
 
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
   13 is at the outside.
37
37
 
38
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on anf off in unison in the centre of the clock.
 
40
   LEDs that turn on and off in unison in the centre of the clock.
41
41
 
42
42
 * a button should be attached to pin 3 that grounds it when pressed.
43
43
 
44
 
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
45
45
 
46
46
Implementation details:
47
47
 
50
50
 * the timing of the drawing of the clock face is recalculated with
51
51
   every rotation of the propeller.
52
52
    
53
 
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
   software skips every other one. This means that the clock may
55
55
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to dicsover the position that
 
56
   position. You will need to experiment to discover the position that
57
57
   the propeller must be in when starting the clock.
58
58
    
59
59
Usage instructions:
75
75
 
76
76
******************************************************************************/
77
77
 
78
 
 
79
 
#include <button.h>
80
78
#include "config.h"
 
79
#include "button.h"
81
80
#include "time.h"
82
 
#include "mode_switcher.h"
83
 
#include "drawer.h"
 
81
#include "Arduino.h"
 
82
#include "analogue_clock.h"
 
83
#include "digital_clock.h"
 
84
#include "test_pattern.h"
84
85
 
85
86
//_____________________________________________________________________________
86
87
//                                                                         data
87
88
 
88
 
 
89
89
// when non-zero, the time (in microseconds) of a new fan pulse that
90
90
// has just occurred, which means that segment drawing needs to be
91
91
// restarted
92
 
static unsigned long new_pulse_at = 0;
 
92
static unsigned long _new_pulse_at = 0;
93
93
 
94
94
// the time (in microseconds) when the last fan pulse occurred
95
 
static unsigned long last_pulse_at = 0;
 
95
static unsigned long _last_pulse_at = 0;
96
96
 
97
97
// duration (in microseconds) that a segment should be displayed
98
 
static unsigned long segment_step = 0;
 
98
static unsigned long _segment_step = 0;
99
99
 
100
100
// remainder after divisor and a tally of the remainders for each segment
101
 
static unsigned long segment_step_sub_step = 0;
102
 
static unsigned long segment_step_sub = 0;
103
 
 
104
 
// flag to indicate that the drawing mode should be cycled to the next one
105
 
static bool inc_draw_mode = false;
106
 
 
107
 
// a bounce-managed button
108
 
static Button button( 3 );
 
101
static unsigned long _segment_step_sub_step = 0;
 
102
static unsigned long _segment_step_sub = 0;
 
103
 
 
104
// the button
 
105
static Button _button( 3 );
 
106
 
 
107
// modes
 
108
static int _major_mode = 0;
 
109
static int _minor_mode = 0;
 
110
 
 
111
#define MAIN_MODE_IDX 0
 
112
 
 
113
#define ANALOGUE_CLOCK_IDX 0
 
114
#define DIGITAL_CLOCK_IDX 1
 
115
#define TEST_PATTERN_IDX 2
109
116
 
110
117
//_____________________________________________________________________________
111
118
//                                                                         code
112
119
 
113
120
 
114
 
// check for button presses
115
 
void checkButtons()
 
121
// activate the current minor mode
 
122
void activate_minor_mode()
116
123
{
117
 
        // update buttons
118
 
        int event = button.update();
119
 
 
120
 
        // handle any events
121
 
        switch( event ) {
122
 
        case 1:
123
 
                inc_draw_mode = true;
124
 
                break;
 
124
        switch( _minor_mode ) {
 
125
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
 
126
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
125
127
        }
126
128
}
127
129
 
128
 
 
129
 
// turn an led on/off
130
 
void ledOn( int num, bool on )
 
130
// perform button events
 
131
void do_button_events()
131
132
{
132
 
        if( num < 0 || num > 9 ) return;
133
 
 
134
 
        // convert to pin no.
135
 
        num += 4;
136
 
 
137
 
        // pin 4 needs to be inverted (it's driving a PNP)
138
 
        if( num == 4 ) on = !on;
139
 
 
140
 
        digitalWrite( num, on? HIGH : LOW );
 
133
        // loop through pending events
 
134
        while( int event = _button.get_event() )
 
135
        {
 
136
                switch( event )
 
137
                {
 
138
                case 1:
 
139
                        // short press
 
140
                        switch( _major_mode ) {
 
141
                        case MAIN_MODE_IDX:
 
142
                                switch( _minor_mode ) {
 
143
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
 
144
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
 
145
                                }
 
146
                                break;
 
147
                        }
 
148
                        break;
 
149
 
 
150
                case 2:
 
151
                        // long press
 
152
                        switch( _major_mode ) {
 
153
                        case MAIN_MODE_IDX:
 
154
                                if( ++_minor_mode >= 3 )
 
155
                                        _minor_mode = 0;
 
156
                                switch( _minor_mode ) {
 
157
                                case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
158
                                }
 
159
                                break;
 
160
                        }
 
161
                        break;
 
162
 
 
163
                case 3:
 
164
                        // looooong press (change major mode)
 
165
                        if( ++_major_mode > 0 )
 
166
                                _major_mode = 0;
 
167
                        switch( _major_mode ) {
 
168
                        case MAIN_MODE_IDX: _minor_mode = 0; break;
 
169
                        }
 
170
                        activate_minor_mode();
 
171
                        break;
 
172
                }
 
173
        }
141
174
}
142
175
 
143
176
 
144
177
// draw a display segment
145
 
void drawNextSegment( bool reset )
 
178
void draw_next_segment( bool reset )
146
179
{
147
 
        static ModeSwitcher mode_switcher;
148
 
        static bool init = false;
149
 
 
150
 
        if( !init ) {
151
 
                init = true;
152
 
                mode_switcher.activate();
153
 
        }
154
 
 
155
180
        // keep track of segment
156
181
#if CLOCK_FORWARD
157
182
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
161
186
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
162
187
#endif
163
188
 
 
189
        // frame reset
 
190
        if( reset ) {
 
191
                switch( _major_mode ) {
 
192
                case MAIN_MODE_IDX:
 
193
                        switch( _minor_mode ) {
 
194
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
 
195
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
 
196
                        }
 
197
                        break;
 
198
                }
 
199
        }
 
200
 
164
201
        // draw
165
 
        Drawer &drawer = mode_switcher.get_drawer();
166
 
        if( reset ) drawer.draw_reset();
167
 
        drawer.draw( segment );
 
202
        switch( _major_mode ) {
 
203
        case MAIN_MODE_IDX:
 
204
                switch( _minor_mode ) {
 
205
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
 
206
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
 
207
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
 
208
                }
 
209
                break;
 
210
        }
168
211
 
169
212
#if CLOCK_FORWARD
170
213
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
175
218
 
176
219
 
177
220
// calculate time constants when a new pulse has occurred
178
 
void calculateSegmentTimes()
 
221
void calculate_segment_times()
179
222
{
180
223
        // check for overflows, and only recalculate times if there isn't
181
224
        // one (if there is, we'll just go with the last pulse's times)
182
 
        if( new_pulse_at > last_pulse_at )
 
225
        if( _new_pulse_at > _last_pulse_at )
183
226
        {
184
227
                // new segment stepping times
185
 
                unsigned long delta = new_pulse_at - last_pulse_at;
186
 
                segment_step = delta / NUM_SEGMENTS;
187
 
                segment_step_sub = 0;
188
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
228
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
229
                _segment_step = delta / NUM_SEGMENTS;
 
230
                _segment_step_sub = 0;
 
231
                _segment_step_sub_step = delta % NUM_SEGMENTS;
189
232
        }
190
233
 
191
234
        // now we have dealt with this pulse, save the pulse time and
192
235
        // clear new_pulse_at, ready for the next pulse
193
 
        last_pulse_at = new_pulse_at;
194
 
        new_pulse_at = 0;
 
236
        _last_pulse_at = _new_pulse_at;
 
237
        _new_pulse_at = 0;
195
238
}
196
239
 
197
240
 
198
241
// wait until it is time to draw the next segment or a new pulse has
199
242
// occurred
200
 
void waitTillNextSegment( bool reset )
 
243
void wait_till_end_of_segment( bool reset )
201
244
{
202
245
        static unsigned long end_time = 0;
203
246
 
204
247
        // handle reset
205
248
        if( reset )
206
 
                end_time = last_pulse_at;
 
249
                end_time = _last_pulse_at;
207
250
 
208
251
        // work out the time that this segment should be displayed until
209
 
        end_time += segment_step;
210
 
        segment_step_sub += segment_step_sub_step;
211
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
212
 
                segment_step_sub -= NUM_SEGMENTS;
 
252
        end_time += _segment_step;
 
253
        _segment_step_sub += _segment_step_sub_step;
 
254
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
255
                _segment_step_sub -= NUM_SEGMENTS;
213
256
                end_time++;
214
257
        }
215
258
 
216
259
        // wait
217
 
        while( micros() < end_time && !new_pulse_at );
 
260
        while( micros() < end_time && !_new_pulse_at );
218
261
}
219
262
 
220
263
 
221
264
// ISR to handle the pulses from the fan's tachiometer
222
 
void fanPulseHandler()
 
265
void fan_pulse_handler()
223
266
{
224
267
        // the fan actually sends two pulses per revolution. These pulses
225
268
        // may not be exactly evenly distributed around the rotation, so
230
273
        if( !ignore )
231
274
        {
232
275
                // set a new pulse time
233
 
                new_pulse_at = micros();
 
276
                _new_pulse_at = micros();
234
277
        }
235
278
}
236
279
 
239
282
void setup()
240
283
{
241
284
        // set up an interrupt handler on pin 2 to nitice fan pulses
242
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
285
        attachInterrupt( 0, fan_pulse_handler, RISING );
243
286
        digitalWrite( 2, HIGH );
244
287
  
245
288
        // set up output pins (4 to 13) for the led array
249
292
        // set up mode-switch button on pin 3
250
293
        pinMode( 3, INPUT );
251
294
        digitalWrite( 3, HIGH );
252
 
        button.add_event_at( 5, 1 );
253
 
        button.add_event_at( 1000, 2 );
254
 
        button.add_event_at( 4000, 3 );
255
 
 
256
 
        // serial comms
257
 
        Serial.begin( 9600 );
 
295
        static int event_times[] = { 5, 500, 4000, 0 };
 
296
        _button.set_event_times( event_times );
 
297
 
 
298
        // initialise RTC
 
299
        Time::init();
 
300
 
 
301
        // activate the minor mode
 
302
        switch( _major_mode ) {
 
303
        case MAIN_MODE_IDX: activate_minor_mode(); break;
 
304
        }
258
305
}
259
306
 
260
307
 
262
309
void loop()
263
310
{
264
311
        // if there has been a new pulse, we'll be resetting the display
265
 
        bool reset = new_pulse_at? true : false;
 
312
        bool reset = _new_pulse_at? true : false;
 
313
 
 
314
        // update button
 
315
        _button.update();
266
316
 
267
317
        // only do this stuff at the start of a display cycle, to ensure
268
318
        // that no state changes mid-display
269
319
        if( reset )
270
320
        {
271
 
                // check buttons
272
 
                checkButtons();
 
321
                // calculate segment times
 
322
                calculate_segment_times();
273
323
 
274
324
                // keep track of time
275
 
                Time &time = Time::get_instance();
276
 
                time.update();
 
325
                Time::update();
 
326
 
 
327
                // perform button events
 
328
                do_button_events();
277
329
        }
278
330
 
279
331
        // draw this segment
280
 
        drawNextSegment( reset );
281
 
 
282
 
        // do we need to recalculate segment times?
283
 
        if( reset )
284
 
                calculateSegmentTimes();
 
332
        draw_next_segment( reset );
285
333
 
286
334
        // wait till it's time to draw the next segment
287
 
        waitTillNextSegment( reset );
 
335
        wait_till_end_of_segment( reset );
288
336
}