29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
40
LEDs that turn on and off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
56
position. You will need to experiment to discover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
79
#include "button.h"
81
#include "mode_switcher.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
84
86
//_____________________________________________________________________________
88
89
// when non-zero, the time (in microseconds) of a new fan pulse that
89
90
// has just occurred, which means that segment drawing needs to be
91
static unsigned long new_pulse_at = 0;
92
static unsigned long _new_pulse_at = 0;
93
94
// the time (in microseconds) when the last fan pulse occurred
94
static unsigned long last_pulse_at = 0;
95
static unsigned long _last_pulse_at = 0;
96
97
// duration (in microseconds) that a segment should be displayed
97
static unsigned long segment_step = 0;
98
static unsigned long _segment_step = 0;
99
100
// remainder after divisor and a tally of the remainders for each segment
100
static unsigned long segment_step_sub_step = 0;
101
static unsigned long segment_step_sub = 0;
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
104
static Button button( 3 );
107
static int major_mode = 0;
110
static std::vector< MajorMode * > major_modes;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
112
117
//_____________________________________________________________________________
116
// check for button presses
120
int event = button.update();
125
major_modes[ major_mode ]->short_press();
128
major_modes[ major_mode ]->long_press();
131
if( ++major_mode >= major_modes.size() )
133
major_modes[ major_mode ]->activate();
121
// activate the current minor mode
122
void activate_minor_mode()
124
switch( _minor_mode ) {
125
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
126
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
130
// perform button events
131
void do_button_events()
133
// loop through pending events
134
while( int event = _button.get_event() )
140
switch( _major_mode ) {
142
switch( _minor_mode ) {
143
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
144
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
152
switch( _major_mode ) {
154
if( ++_minor_mode >= 3 )
156
switch( _minor_mode ) {
157
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
164
// looooong press (change major mode)
165
if( ++_major_mode > 0 )
167
switch( _major_mode ) {
168
case MAIN_MODE_IDX: _minor_mode = 0; break;
170
activate_minor_mode();
139
177
// draw a display segment
140
void drawNextSegment( bool reset )
178
void draw_next_segment( bool reset )
142
180
// keep track of segment
143
181
#if CLOCK_FORWARD
148
186
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
191
switch( _major_mode ) {
193
switch( _minor_mode ) {
194
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
195
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
152
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
153
if( reset ) drawer.draw_reset();
154
drawer.draw( segment );
202
switch( _major_mode ) {
204
switch( _minor_mode ) {
205
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
206
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
207
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
156
212
#if CLOCK_FORWARD
157
213
if( ++segment >= NUM_SEGMENTS ) segment = 0;
164
220
// calculate time constants when a new pulse has occurred
165
void calculateSegmentTimes()
221
void calculate_segment_times()
167
223
// check for overflows, and only recalculate times if there isn't
168
224
// one (if there is, we'll just go with the last pulse's times)
169
if( new_pulse_at > last_pulse_at )
225
if( _new_pulse_at > _last_pulse_at )
171
227
// new segment stepping times
172
unsigned long delta = new_pulse_at - last_pulse_at;
173
segment_step = delta / NUM_SEGMENTS;
174
segment_step_sub = 0;
175
segment_step_sub_step = delta % NUM_SEGMENTS;
228
unsigned long delta = _new_pulse_at - _last_pulse_at;
229
_segment_step = delta / NUM_SEGMENTS;
230
_segment_step_sub = 0;
231
_segment_step_sub_step = delta % NUM_SEGMENTS;
178
234
// now we have dealt with this pulse, save the pulse time and
179
235
// clear new_pulse_at, ready for the next pulse
180
last_pulse_at = new_pulse_at;
236
_last_pulse_at = _new_pulse_at;
185
241
// wait until it is time to draw the next segment or a new pulse has
187
void waitTillNextSegment( bool reset )
243
void wait_till_end_of_segment( bool reset )
189
245
static unsigned long end_time = 0;
193
end_time = last_pulse_at;
249
end_time = _last_pulse_at;
195
251
// work out the time that this segment should be displayed until
196
end_time += segment_step;
197
segment_step_sub += segment_step_sub_step;
198
if( segment_step_sub >= NUM_SEGMENTS ) {
199
segment_step_sub -= NUM_SEGMENTS;
252
end_time += _segment_step;
253
_segment_step_sub += _segment_step_sub_step;
254
if( _segment_step_sub >= NUM_SEGMENTS ) {
255
_segment_step_sub -= NUM_SEGMENTS;
204
while( micros() < end_time && !new_pulse_at );
260
while( micros() < end_time && !_new_pulse_at );
208
264
// ISR to handle the pulses from the fan's tachiometer
209
void fanPulseHandler()
265
void fan_pulse_handler()
211
267
// the fan actually sends two pulses per revolution. These pulses
212
268
// may not be exactly evenly distributed around the rotation, so
236
292
// set up mode-switch button on pin 3
237
293
pinMode( 3, INPUT );
238
294
digitalWrite( 3, HIGH );
239
button.add_event_at( 5, 1 );
240
button.add_event_at( 1000, 2 );
241
button.add_event_at( 4000, 3 );
244
Serial.begin( 9600 );
246
// set up major modes
247
static ModeSwitcher mode_switcher;
248
major_modes.push_back( &mode_switcher );
249
major_modes[ 0 ]->activate();
295
static int event_times[] = { 5, 500, 4000, 0 };
296
_button.set_event_times( event_times );
301
// activate the minor mode
302
switch( _major_mode ) {
303
case MAIN_MODE_IDX: activate_minor_mode(); break;
256
311
// if there has been a new pulse, we'll be resetting the display
257
bool reset = new_pulse_at? true : false;
312
bool reset = _new_pulse_at? true : false;
259
317
// only do this stuff at the start of a display cycle, to ensure
260
318
// that no state changes mid-display
321
// calculate segment times
322
calculate_segment_times();
266
324
// keep track of time
267
Time &time = Time::get_instance();
327
// perform button events
271
331
// draw this segment
272
drawNextSegment( reset );
274
// do we need to recalculate segment times?
276
calculateSegmentTimes();
332
draw_next_segment( reset );
278
334
// wait till it's time to draw the next segment
279
waitTillNextSegment( reset );
335
wait_till_end_of_segment( reset );