29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
40
LEDs that turn on and off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
56
position. You will need to experiment to discover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
80
79
#include "button.h"
82
#include "switcher_major_mode.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
85
86
//_____________________________________________________________________________
89
89
// when non-zero, the time (in microseconds) of a new fan pulse that
90
90
// has just occurred, which means that segment drawing needs to be
92
static unsigned long new_pulse_at = 0;
92
static unsigned long _new_pulse_at = 0;
94
94
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long last_pulse_at = 0;
95
static unsigned long _last_pulse_at = 0;
97
97
// duration (in microseconds) that a segment should be displayed
98
static unsigned long segment_step = 0;
98
static unsigned long _segment_step = 0;
100
100
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long segment_step_sub_step = 0;
102
static unsigned long segment_step_sub = 0;
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button button( 3 );
108
static int major_mode = 0;
110
#define MAX_MAJOR_MODES 5
113
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
115
117
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
124
switch( _minor_mode ) {
125
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
126
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
119
130
// perform button events
120
void doButtonEvents()
131
void do_button_events()
122
133
// loop through pending events
123
while( int event = button.get_event() )
134
while( int event = _button.get_event() )
129
major_modes[ major_mode ]->press();
140
switch( _major_mode ) {
142
switch( _minor_mode ) {
143
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
144
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
134
major_modes[ major_mode ]->long_press();
152
switch( _major_mode ) {
154
if( ++_minor_mode >= 3 )
156
switch( _minor_mode ) {
157
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
138
164
// looooong press (change major mode)
140
if( ++major_mode >= MAX_MAJOR_MODES )
142
} while( major_modes[ major_mode ] == NULL );
143
major_modes[ major_mode ]->activate();
165
if( ++_major_mode > 0 )
167
switch( _major_mode ) {
168
case MAIN_MODE_IDX: _minor_mode = 0; break;
170
activate_minor_mode();
151
177
// draw a display segment
152
void drawNextSegment( bool reset )
178
void draw_next_segment( bool reset )
154
180
// keep track of segment
155
181
#if CLOCK_FORWARD
160
186
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
191
switch( _major_mode ) {
193
switch( _minor_mode ) {
194
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
195
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
164
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
165
if( reset ) drawer.draw_reset();
166
drawer.draw( segment );
202
switch( _major_mode ) {
204
switch( _minor_mode ) {
205
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
206
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
207
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
168
212
#if CLOCK_FORWARD
169
213
if( ++segment >= NUM_SEGMENTS ) segment = 0;
176
220
// calculate time constants when a new pulse has occurred
177
void calculateSegmentTimes()
221
void calculate_segment_times()
179
223
// check for overflows, and only recalculate times if there isn't
180
224
// one (if there is, we'll just go with the last pulse's times)
181
if( new_pulse_at > last_pulse_at )
225
if( _new_pulse_at > _last_pulse_at )
183
227
// new segment stepping times
184
unsigned long delta = new_pulse_at - last_pulse_at;
185
segment_step = delta / NUM_SEGMENTS;
186
segment_step_sub = 0;
187
segment_step_sub_step = delta % NUM_SEGMENTS;
228
unsigned long delta = _new_pulse_at - _last_pulse_at;
229
_segment_step = delta / NUM_SEGMENTS;
230
_segment_step_sub = 0;
231
_segment_step_sub_step = delta % NUM_SEGMENTS;
190
234
// now we have dealt with this pulse, save the pulse time and
191
235
// clear new_pulse_at, ready for the next pulse
192
last_pulse_at = new_pulse_at;
236
_last_pulse_at = _new_pulse_at;
197
241
// wait until it is time to draw the next segment or a new pulse has
199
void waitTillEndOfSegment( bool reset )
243
void wait_till_end_of_segment( bool reset )
201
245
static unsigned long end_time = 0;
205
end_time = last_pulse_at;
249
end_time = _last_pulse_at;
207
251
// work out the time that this segment should be displayed until
208
end_time += segment_step;
209
segment_step_sub += segment_step_sub_step;
210
if( segment_step_sub >= NUM_SEGMENTS ) {
211
segment_step_sub -= NUM_SEGMENTS;
252
end_time += _segment_step;
253
_segment_step_sub += _segment_step_sub_step;
254
if( _segment_step_sub >= NUM_SEGMENTS ) {
255
_segment_step_sub -= NUM_SEGMENTS;
216
while( micros() < end_time && !new_pulse_at );
260
while( micros() < end_time && !_new_pulse_at );
220
264
// ISR to handle the pulses from the fan's tachiometer
221
void fanPulseHandler()
265
void fan_pulse_handler()
223
267
// the fan actually sends two pulses per revolution. These pulses
224
268
// may not be exactly evenly distributed around the rotation, so
248
292
// set up mode-switch button on pin 3
249
293
pinMode( 3, INPUT );
250
294
digitalWrite( 3, HIGH );
251
static int event_times[] = { 5, 1000, 4000, 0 };
252
button.set_event_times( event_times );
254
// set up major modes
255
static SwitcherMajorMode switcher_major_mode;
257
major_modes[ mode++ ] = &switcher_major_mode;
258
major_modes[ 0 ]->activate();
295
static int event_times[] = { 5, 500, 4000, 0 };
296
_button.set_event_times( event_times );
301
// activate the minor mode
302
switch( _major_mode ) {
303
case MAIN_MODE_IDX: activate_minor_mode(); break;
265
311
// if there has been a new pulse, we'll be resetting the display
266
bool reset = new_pulse_at? true : false;
312
bool reset = _new_pulse_at? true : false;
271
317
// only do this stuff at the start of a display cycle, to ensure
272
318
// that no state changes mid-display
275
321
// calculate segment times
276
calculateSegmentTimes();
322
calculate_segment_times();
278
324
// keep track of time
279
Time &time = Time::get_instance();
282
327
// perform button events
286
331
// draw this segment
287
drawNextSegment( reset );
332
draw_next_segment( reset );
289
334
// wait till it's time to draw the next segment
290
waitTillEndOfSegment( reset );
335
wait_till_end_of_segment( reset );