1
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
5
* Copyright (C) 2011 Tim Marston <tim@ed.am> and Dan Marston.
7
* This file is part of propeller-clock (hereafter referred to as "this
8
* program"). See http://ed.am/dev/software/arduino/propeller-clock for more
11
* This program is free software: you can redistribute it and/or modify
12
* it under the terms of the GNU Lesser General Public License as published
13
* by the Free Software Foundation, either version 3 of the License, or
14
* (at your option) any later version.
16
* This program is distributed in the hope that it will be useful,
17
* but WITHOUT ANY WARRANTY; without even the implied warranty of
18
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19
* GNU Lesser General Public License for more details.
21
* You should have received a copy of the GNU Lesser General Public License
22
* along with this program. If not, see <http://www.gnu.org/licenses/>.
25
/******************************************************************************
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
LED on pin 4 is in the centre of the clock face and the LED on pin
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
Implementation details:
48
* for a schematic, see ../project/propeller-clock.sch.
50
* the timing of the drawing of the clock face is recalculated with
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
software skips every other one. This means that the clock may
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
57
the propeller must be in when starting the clock.
61
* pressing the button cycles between variations of the current
64
* pressing and holding the button for a second cycles between display
65
modes (e.g., analogue and digital).
67
* pressing and holding the button for 5 seconds enters "time set"
68
mode. In this mode, the following applies:
69
- the field that is being set flashes
70
- pressing the button increments the field currently being set
71
- pressing and holding the button for a second cycles through the
72
fields that can be set
73
- pressing and holding the button for 5 seconds sets the time and
76
******************************************************************************/
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
86
//_____________________________________________________________________________
89
// when non-zero, the time (in microseconds) of a new fan pulse that
90
// has just occurred, which means that segment drawing needs to be
92
static unsigned long _new_pulse_at = 0;
94
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long _last_pulse_at = 0;
97
// duration (in microseconds) that a segment should be displayed
98
static unsigned long _segment_step = 0;
100
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
117
//_____________________________________________________________________________
121
// activate the current minor mode
122
void activate_minor_mode()
124
switch( _minor_mode ) {
125
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
126
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
130
// perform button events
131
void do_button_events()
133
// loop through pending events
134
while( int event = _button.get_event() )
140
switch( _major_mode ) {
142
switch( _minor_mode ) {
143
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
144
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
152
switch( _major_mode ) {
154
if( ++_minor_mode >= 3 )
156
switch( _minor_mode ) {
157
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
164
// looooong press (change major mode)
165
if( ++_major_mode > 0 )
167
switch( _major_mode ) {
168
case MAIN_MODE_IDX: _minor_mode = 0; break;
170
activate_minor_mode();
177
// draw a display segment
178
void draw_next_segment( bool reset )
180
// keep track of segment
182
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
183
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
185
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
186
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
191
switch( _major_mode ) {
193
switch( _minor_mode ) {
194
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
195
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
202
switch( _major_mode ) {
204
switch( _minor_mode ) {
205
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
206
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
207
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
213
if( ++segment >= NUM_SEGMENTS ) segment = 0;
215
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
220
// calculate time constants when a new pulse has occurred
221
void calculate_segment_times()
223
// check for overflows, and only recalculate times if there isn't
224
// one (if there is, we'll just go with the last pulse's times)
225
if( _new_pulse_at > _last_pulse_at )
227
// new segment stepping times
228
unsigned long delta = _new_pulse_at - _last_pulse_at;
229
_segment_step = delta / NUM_SEGMENTS;
230
_segment_step_sub = 0;
231
_segment_step_sub_step = delta % NUM_SEGMENTS;
234
// now we have dealt with this pulse, save the pulse time and
235
// clear new_pulse_at, ready for the next pulse
236
_last_pulse_at = _new_pulse_at;
241
// wait until it is time to draw the next segment or a new pulse has
243
void wait_till_end_of_segment( bool reset )
245
static unsigned long end_time = 0;
249
end_time = _last_pulse_at;
251
// work out the time that this segment should be displayed until
252
end_time += _segment_step;
253
_segment_step_sub += _segment_step_sub_step;
254
if( _segment_step_sub >= NUM_SEGMENTS ) {
255
_segment_step_sub -= NUM_SEGMENTS;
260
while( micros() < end_time && !_new_pulse_at );
264
// ISR to handle the pulses from the fan's tachiometer
265
void fan_pulse_handler()
267
// the fan actually sends two pulses per revolution. These pulses
268
// may not be exactly evenly distributed around the rotation, so
269
// we can't recalculate times on every pulse. Instead, we ignore
270
// every other pulse so timings are based on a complete rotation.
271
static bool ignore = true;
275
// set a new pulse time
276
_new_pulse_at = micros();
8
// set up an interrupt handler on pin 2 to nitice fan pulses
9
attachInterrupt( 0, fanPulseHandler, RISING );
10
digitalWrite( 2, HIGH );
284
// set up an interrupt handler on pin 2 to nitice fan pulses
285
attachInterrupt( 0, fan_pulse_handler, RISING );
286
digitalWrite( 2, HIGH );
12
// set up output pins (4 to 13) for the led array
13
for( int a = 4; a < 14; a++ )
20
// when non-zero, the time (in microseconds) of a new fan pulse that has just
21
// occurred, which means that segment drawing needs to be restarted
22
static unsigned long new_pulse_at = 0;
24
// interrupt handler to count the number of fan pulses
25
void fanPulseHandler()
27
// ignore every other pulse
28
static bool ignore = true;
32
// set a new pulse time
33
new_pulse_at = micros();
37
// wait until it is time to draw the next segment or a new pulse has occurred
38
void endOfSegmentDelay()
40
while( micros() < next_segment_at && !new_pulse_at );
288
// set up output pins (4 to 13) for the led array
289
for( int a = 4; a < 14; a++ )
290
pinMode( a, OUTPUT );
292
// set up mode-switch button on pin 3
294
digitalWrite( 3, HIGH );
295
static int event_times[] = { 5, 500, 4000, 0 };
296
_button.set_event_times( event_times );
301
// activate the minor mode
302
switch( _major_mode ) {
303
case MAIN_MODE_IDX: activate_minor_mode(); break;
47
unsigned long loop_start_time = micros();
49
// wait till it's time to draw the next segment
311
// if there has been a new pulse, we'll be resetting the display
312
bool reset = _new_pulse_at? true : false;
317
// only do this stuff at the start of a display cycle, to ensure
318
// that no state changes mid-display
321
// calculate segment times
322
calculate_segment_times();
324
// keep track of time
327
// perform button events
332
draw_next_segment( reset );
334
// wait till it's time to draw the next segment
335
wait_till_end_of_segment( reset );