/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-03-10 13:04:29 UTC
  • Revision ID: tim@ed.am-20120310130429-310w5ejo968mc6mo
cleaned-up notes

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
1
2
/*
2
3
 * propeller-clock.ino
3
4
 *
4
5
 * Copyright (C) 2011 Tim Marston <tim@ed.am> and Dan Marston.
5
6
 *
6
7
 * This file is part of propeller-clock (hereafter referred to as "this
7
 
 * program"). See http://ed.am/software/arduino/propeller-clock for more
 
8
 * program"). See http://ed.am/dev/software/arduino/propeller-clock for more
8
9
 * information.
9
10
 *
10
11
 * This program is free software: you can redistribute it and/or modify
27
28
 
28
29
 * a PC fan is wired up to a 12V power supply
29
30
 
30
 
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
 
   arduino.
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
32
33
 
33
 
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
34
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
35
36
   13 is at the outside.
36
37
 
37
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
38
 
   used to indirectly drive (via a MOSFET) multiple LEDs which turn on
39
 
   and off in unison in the centre of the clock.
 
39
   used to indirectly drive a transistor which in turn drives several
 
40
   LEDs that turn on and off in unison in the centre of the clock.
40
41
 
41
42
 * a button should be attached to pin 3 that grounds it when pressed.
42
43
 
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
 
45
 
43
46
Implementation details:
44
47
 
45
 
 * for a schematic, see project/propeller-clock.sch.
 
48
 * for a schematic, see ../project/propeller-clock.sch.
46
49
 
47
50
 * the timing of the drawing of the clock face is recalculated with
48
51
   every rotation of the propeller.
49
52
    
50
 
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
51
54
   software skips every other one. This means that the clock may
52
55
   appear upside-down if started with the propeller in the wrong
53
 
   position. You will need to experiment to dicsover the position that
 
56
   position. You will need to experiment to discover the position that
54
57
   the propeller must be in when starting the clock.
55
58
    
56
59
Usage instructions:
67
70
    - pressing the button increments the field currently being set
68
71
    - pressing and holding the button for a second cycles through the
69
72
      fields that can be set
70
 
    - press and holding the button for 5 seconds to finish
 
73
    - pressing and holding the button for 5 seconds sets the time and
 
74
      exits "time set" mode
71
75
 
72
76
******************************************************************************/
73
77
 
74
 
 
75
 
#include <Bounce.h>
 
78
#include "config.h"
 
79
#include "button.h"
 
80
#include "time.h"
 
81
#include "Arduino.h"
 
82
#include "analogue_clock.h"
 
83
#include "digital_clock.h"
 
84
#include "test_pattern.h"
76
85
 
77
86
//_____________________________________________________________________________
78
87
//                                                                         data
79
88
 
80
 
 
81
89
// when non-zero, the time (in microseconds) of a new fan pulse that
82
90
// has just occurred, which means that segment drawing needs to be
83
91
// restarted
84
 
static unsigned long new_pulse_at = 0;
 
92
static unsigned long _new_pulse_at = 0;
85
93
 
86
94
// the time (in microseconds) when the last fan pulse occurred
87
 
static unsigned long last_pulse_at = 0;
 
95
static unsigned long _last_pulse_at = 0;
88
96
 
89
97
// duration (in microseconds) that a segment should be displayed
90
 
static unsigned long segment_step = 0;
 
98
static unsigned long _segment_step = 0;
91
99
 
92
100
// remainder after divisor and a tally of the remainders for each segment
93
 
static unsigned long segment_step_sub_step = 0;
94
 
static unsigned long segment_step_sub = 0;
95
 
 
96
 
// flag to indicate that the drawing mode should be cycled to the next one
97
 
static bool inc_draw_mode = false;
98
 
 
99
 
// a bounce-managed button
100
 
static Bounce button( 3, 5 );
101
 
 
102
 
// the time
103
 
static int time_hours = 0;
104
 
static int time_minutes = 0;
105
 
static int time_seconds = 0;
106
 
 
107
 
// number of segments in a full display (rotation) is 60 (one per
108
 
// second) times the desired number of sub-divisions of a second
109
 
#define NUM_SECOND_SEGMENTS 5
110
 
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
101
static unsigned long _segment_step_sub_step = 0;
 
102
static unsigned long _segment_step_sub = 0;
 
103
 
 
104
// the button
 
105
static Button _button( 3 );
 
106
 
 
107
// modes
 
108
static int _major_mode = 0;
 
109
static int _minor_mode = 0;
 
110
 
 
111
#define MAIN_MODE_IDX 0
 
112
 
 
113
#define ANALOGUE_CLOCK_IDX 0
 
114
#define DIGITAL_CLOCK_IDX 1
 
115
#define TEST_PATTERN_IDX 2
111
116
 
112
117
//_____________________________________________________________________________
113
118
//                                                                         code
114
119
 
115
120
 
116
 
// check for button presses
117
 
void checkButtons()
 
121
// activate the current minor mode
 
122
void activate_minor_mode()
118
123
{
119
 
        // update buttons
120
 
        button.update();
121
 
 
122
 
        // notice button presses
123
 
        if( button.risingEdge() )
124
 
                inc_draw_mode = true;
 
124
        switch( _minor_mode ) {
 
125
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
 
126
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
127
        }
125
128
}
126
129
 
127
 
 
128
 
// keep track of time
129
 
void trackTime()
 
130
// perform button events
 
131
void do_button_events()
130
132
{
131
 
        // previous time and any carried-over milliseconds
132
 
        static unsigned long last_time = millis();
133
 
        static unsigned long carry = 0;
134
 
 
135
 
        // how many milliseonds have elapsed since we last checked?
136
 
        unsigned long next_time = millis();
137
 
        unsigned long delta = next_time - last_time + carry;
138
 
 
139
 
        // update the previous time and carried-over milliseconds
140
 
        last_time = next_time;
141
 
        carry = delta % 1000;
142
 
 
143
 
        // add the seconds that have passed to the time
144
 
        time_seconds += delta / 1000;
145
 
        while( time_seconds >= 60 ) {
146
 
                time_seconds -= 60;
147
 
                time_minutes++;
148
 
                if( time_minutes >= 60 ) {
149
 
                        time_minutes -= 60;
150
 
                        time_hours++;
151
 
                        if( time_hours >= 24 )
152
 
                                time_hours -= 24;
 
133
        // loop through pending events
 
134
        while( int event = _button.get_event() )
 
135
        {
 
136
                switch( event )
 
137
                {
 
138
                case 1:
 
139
                        // short press
 
140
                        switch( _major_mode ) {
 
141
                        case MAIN_MODE_IDX:
 
142
                                switch( _minor_mode ) {
 
143
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
 
144
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
 
145
                                }
 
146
                                break;
 
147
                        }
 
148
                        break;
 
149
 
 
150
                case 2:
 
151
                        // long press
 
152
                        switch( _major_mode ) {
 
153
                        case MAIN_MODE_IDX:
 
154
                                if( ++_minor_mode >= 3 )
 
155
                                        _minor_mode = 0;
 
156
                                switch( _minor_mode ) {
 
157
                                case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
158
                                }
 
159
                                break;
 
160
                        }
 
161
                        break;
 
162
 
 
163
                case 3:
 
164
                        // looooong press (change major mode)
 
165
                        if( ++_major_mode > 0 )
 
166
                                _major_mode = 0;
 
167
                        switch( _major_mode ) {
 
168
                        case MAIN_MODE_IDX: _minor_mode = 0; break;
 
169
                        }
 
170
                        activate_minor_mode();
 
171
                        break;
153
172
                }
154
173
        }
155
174
}
156
175
 
157
176
 
158
 
// draw a segment for the test display
159
 
void drawNextSegment_test( bool reset )
 
177
// draw a display segment
 
178
void draw_next_segment( bool reset )
160
179
{
161
180
        // keep track of segment
162
 
        static unsigned int segment = 0;
163
 
        if( reset ) segment = 0;
164
 
        segment++;
165
 
 
166
 
        // turn on inside and outside LEDs
167
 
        digitalWrite( 4, HIGH );
168
 
        digitalWrite( 13, HIGH );
169
 
 
170
 
        // display segment number in binary across in the inside LEDs,
171
 
        // with the LED on pin 12 showing the least-significant bit
172
 
        for( int a = 0; a < 8; a++ )
173
 
                digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
174
 
}
175
 
 
176
 
 
177
 
// draw a segment for the time display
178
 
void drawNextSegment_time( bool reset )
179
 
{
180
 
        static unsigned int second = 0;
181
 
        static unsigned int segment = 0;
182
 
 
183
 
        // handle display reset
 
181
#if CLOCK_FORWARD
 
182
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
183
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
184
#else
 
185
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
186
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
187
#endif
 
188
 
 
189
        // frame reset
184
190
        if( reset ) {
185
 
                second = 0;
186
 
                segment = 0;
187
 
        }
188
 
 
189
 
        // what needs to be drawn?
190
 
        bool draw_tick = !segment && second % 5 == 0;
191
 
        bool draw_second = !segment && second == time_seconds;
192
 
        bool draw_minute = !segment && second == time_minutes;
193
 
        bool draw_hour = !segment && second == time_hours;
194
 
 
195
 
        // set the LEDs
196
 
        digitalWrite( 13, HIGH );
197
 
        digitalWrite( 12, draw_tick || draw_minute );
198
 
        for( int a = 10; a <= 11; a++ )
199
 
                digitalWrite( a, draw_minute || draw_second );
200
 
        for( int a = 4; a <= 9; a++ )
201
 
                digitalWrite( 10, draw_minute | draw_second || draw_hour );
202
 
 
203
 
        // inc position
204
 
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
205
 
                segment = 0;
206
 
                second++;
207
 
        }
208
 
}
209
 
 
210
 
 
211
 
// draw a display segment
212
 
void drawNextSegment( bool reset )
213
 
{
214
 
        static int draw_mode = 0;
215
 
 
216
 
        // handle mode switch requests
217
 
        if( reset && inc_draw_mode ) {
218
 
                inc_draw_mode = false;
219
 
                draw_mode++;
220
 
                if( draw_mode >= 2 )
221
 
                        draw_mode = 0;
222
 
        }
223
 
 
224
 
        // draw the segment
225
 
        switch( draw_mode ) {
226
 
        case 0: drawNextSegment_test( reset ); break;
227
 
        case 1: drawNextSegment_time( reset ); break;
228
 
        }
 
191
                switch( _major_mode ) {
 
192
                case MAIN_MODE_IDX:
 
193
                        switch( _minor_mode ) {
 
194
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
 
195
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
 
196
                        }
 
197
                        break;
 
198
                }
 
199
        }
 
200
 
 
201
        // draw
 
202
        switch( _major_mode ) {
 
203
        case MAIN_MODE_IDX:
 
204
                switch( _minor_mode ) {
 
205
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
 
206
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
 
207
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
 
208
                }
 
209
                break;
 
210
        }
 
211
 
 
212
#if CLOCK_FORWARD
 
213
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
214
#else
 
215
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
216
#endif
229
217
}
230
218
 
231
219
 
232
220
// calculate time constants when a new pulse has occurred
233
 
void calculateSegmentTimes()
 
221
void calculate_segment_times()
234
222
{
235
223
        // check for overflows, and only recalculate times if there isn't
236
224
        // one (if there is, we'll just go with the last pulse's times)
237
 
        if( new_pulse_at > last_pulse_at )
 
225
        if( _new_pulse_at > _last_pulse_at )
238
226
        {
239
227
                // new segment stepping times
240
 
                unsigned long delta = new_pulse_at - last_pulse_at;
241
 
                segment_step = delta / NUM_SEGMENTS;
242
 
                segment_step_sub = 0;
243
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
228
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
229
                _segment_step = delta / NUM_SEGMENTS;
 
230
                _segment_step_sub = 0;
 
231
                _segment_step_sub_step = delta % NUM_SEGMENTS;
244
232
        }
245
233
 
246
234
        // now we have dealt with this pulse, save the pulse time and
247
235
        // clear new_pulse_at, ready for the next pulse
248
 
        last_pulse_at = new_pulse_at;
249
 
        new_pulse_at = 0;
 
236
        _last_pulse_at = _new_pulse_at;
 
237
        _new_pulse_at = 0;
250
238
}
251
239
 
252
240
 
253
241
// wait until it is time to draw the next segment or a new pulse has
254
242
// occurred
255
 
void waitTillNextSegment( bool reset )
 
243
void wait_till_end_of_segment( bool reset )
256
244
{
257
245
        static unsigned long end_time = 0;
258
246
 
259
247
        // handle reset
260
248
        if( reset )
261
 
                end_time = last_pulse_at;
 
249
                end_time = _last_pulse_at;
262
250
 
263
251
        // work out the time that this segment should be displayed until
264
 
        end_time += segment_step;
265
 
        segment_step_sub += segment_step_sub_step;
266
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
267
 
                segment_step_sub -= NUM_SEGMENTS;
 
252
        end_time += _segment_step;
 
253
        _segment_step_sub += _segment_step_sub_step;
 
254
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
255
                _segment_step_sub -= NUM_SEGMENTS;
268
256
                end_time++;
269
257
        }
270
258
 
271
259
        // wait
272
 
        while( micros() < end_time && !new_pulse_at );
 
260
        while( micros() < end_time && !_new_pulse_at );
273
261
}
274
262
 
275
263
 
276
264
// ISR to handle the pulses from the fan's tachiometer
277
 
void fanPulseHandler()
 
265
void fan_pulse_handler()
278
266
{
279
267
        // the fan actually sends two pulses per revolution. These pulses
280
268
        // may not be exactly evenly distributed around the rotation, so
285
273
        if( !ignore )
286
274
        {
287
275
                // set a new pulse time
288
 
                new_pulse_at = micros();
 
276
                _new_pulse_at = micros();
289
277
        }
290
278
}
291
279
 
294
282
void setup()
295
283
{
296
284
        // set up an interrupt handler on pin 2 to nitice fan pulses
297
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
285
        attachInterrupt( 0, fan_pulse_handler, RISING );
298
286
        digitalWrite( 2, HIGH );
299
287
  
300
288
        // set up output pins (4 to 13) for the led array
303
291
 
304
292
        // set up mode-switch button on pin 3
305
293
        pinMode( 3, INPUT );
306
 
 
307
 
        // serial comms
308
 
        Serial.begin( 9600 );
 
294
        digitalWrite( 3, HIGH );
 
295
        static int event_times[] = { 5, 500, 4000, 0 };
 
296
        _button.set_event_times( event_times );
 
297
 
 
298
        // initialise RTC
 
299
        Time::init();
 
300
 
 
301
        // activate the minor mode
 
302
        switch( _major_mode ) {
 
303
        case MAIN_MODE_IDX: activate_minor_mode(); break;
 
304
        }
309
305
}
310
306
 
311
307
 
313
309
void loop()
314
310
{
315
311
        // if there has been a new pulse, we'll be resetting the display
316
 
        bool reset = new_pulse_at? true : false;
 
312
        bool reset = _new_pulse_at? true : false;
 
313
 
 
314
        // update button
 
315
        _button.update();
317
316
 
318
317
        // only do this stuff at the start of a display cycle, to ensure
319
318
        // that no state changes mid-display
320
319
        if( reset )
321
320
        {
322
 
                // check buttons
323
 
                checkButtons();
 
321
                // calculate segment times
 
322
                calculate_segment_times();
324
323
 
325
324
                // keep track of time
326
 
                trackTime();
 
325
                Time::update();
 
326
 
 
327
                // perform button events
 
328
                do_button_events();
327
329
        }
328
330
 
329
331
        // draw this segment
330
 
        drawNextSegment( reset );
331
 
 
332
 
        // do we need to recalculate segment times?
333
 
        if( reset )
334
 
                calculateSegmentTimes();
 
332
        draw_next_segment( reset );
335
333
 
336
334
        // wait till it's time to draw the next segment
337
 
        waitTillNextSegment( reset );
 
335
        wait_till_end_of_segment( reset );
338
336
}