/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-03-10 13:04:29 UTC
  • Revision ID: tim@ed.am-20120310130429-310w5ejo968mc6mo
cleaned-up notes

Show diffs side-by-side

added added

removed removed

Lines of Context:
28
28
 
29
29
 * a PC fan is wired up to a 12V power supply
30
30
 
31
 
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
32
 
   arduino.
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
33
33
 
34
 
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
   13 is at the outside.
37
37
 
38
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on anf off in unison in the centre of the clock.
 
40
   LEDs that turn on and off in unison in the centre of the clock.
41
41
 
42
42
 * a button should be attached to pin 3 that grounds it when pressed.
43
43
 
44
 
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
45
45
 
46
46
Implementation details:
47
47
 
50
50
 * the timing of the drawing of the clock face is recalculated with
51
51
   every rotation of the propeller.
52
52
    
53
 
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
   software skips every other one. This means that the clock may
55
55
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to dicsover the position that
 
56
   position. You will need to experiment to discover the position that
57
57
   the propeller must be in when starting the clock.
58
58
    
59
59
Usage instructions:
75
75
 
76
76
******************************************************************************/
77
77
 
78
 
 
79
 
#include <Bounce.h>
80
 
#include <DS1307.h>
81
 
#include <Wire.h>
 
78
#include "config.h"
 
79
#include "button.h"
 
80
#include "time.h"
 
81
#include "Arduino.h"
 
82
#include "analogue_clock.h"
 
83
#include "digital_clock.h"
 
84
#include "test_pattern.h"
82
85
 
83
86
//_____________________________________________________________________________
84
87
//                                                                         data
85
88
 
86
 
 
87
89
// when non-zero, the time (in microseconds) of a new fan pulse that
88
90
// has just occurred, which means that segment drawing needs to be
89
91
// restarted
90
 
static unsigned long new_pulse_at = 0;
 
92
static unsigned long _new_pulse_at = 0;
91
93
 
92
94
// the time (in microseconds) when the last fan pulse occurred
93
 
static unsigned long last_pulse_at = 0;
 
95
static unsigned long _last_pulse_at = 0;
94
96
 
95
97
// duration (in microseconds) that a segment should be displayed
96
 
static unsigned long segment_step = 0;
 
98
static unsigned long _segment_step = 0;
97
99
 
98
100
// remainder after divisor and a tally of the remainders for each segment
99
 
static unsigned long segment_step_sub_step = 0;
100
 
static unsigned long segment_step_sub = 0;
101
 
 
102
 
// flag to indicate that the drawing mode should be cycled to the next one
103
 
static bool inc_draw_mode = false;
104
 
 
105
 
// a bounce-managed button
106
 
static Bounce button( 3, 50 );
107
 
 
108
 
// the time
109
 
static int time_hours = 0;
110
 
static int time_minutes = 0;
111
 
static int time_seconds = 0;
112
 
 
113
 
// number of segments in a full display (rotation) is 60 (one per
114
 
// second) times the desired number of sub-divisions of a second
115
 
#define NUM_SECOND_SEGMENTS 5
116
 
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
101
static unsigned long _segment_step_sub_step = 0;
 
102
static unsigned long _segment_step_sub = 0;
 
103
 
 
104
// the button
 
105
static Button _button( 3 );
 
106
 
 
107
// modes
 
108
static int _major_mode = 0;
 
109
static int _minor_mode = 0;
 
110
 
 
111
#define MAIN_MODE_IDX 0
 
112
 
 
113
#define ANALOGUE_CLOCK_IDX 0
 
114
#define DIGITAL_CLOCK_IDX 1
 
115
#define TEST_PATTERN_IDX 2
117
116
 
118
117
//_____________________________________________________________________________
119
118
//                                                                         code
120
119
 
121
120
 
122
 
// check for button presses
123
 
void checkButtons()
 
121
// activate the current minor mode
 
122
void activate_minor_mode()
124
123
{
125
 
        // update buttons
126
 
        button.update();
127
 
 
128
 
        // notice button presses
129
 
        if( button.risingEdge() )
130
 
                inc_draw_mode = true;
 
124
        switch( _minor_mode ) {
 
125
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
 
126
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
127
        }
131
128
}
132
129
 
133
 
 
134
 
// keep track of time
135
 
void trackTime()
 
130
// perform button events
 
131
void do_button_events()
136
132
{
137
 
        // previous time and any carried-over milliseconds
138
 
        static unsigned long last_time = millis();
139
 
        static unsigned long carry = 0;
140
 
 
141
 
        // how many milliseonds have elapsed since we last checked?
142
 
        unsigned long next_time = millis();
143
 
        unsigned long delta = next_time - last_time + carry;
144
 
 
145
 
        // update the previous time and carried-over milliseconds
146
 
        last_time = next_time;
147
 
        carry = delta % 1000;
148
 
 
149
 
        // add the seconds that have passed to the time
150
 
        time_seconds += delta / 1000;
151
 
        while( time_seconds >= 60 ) {
152
 
                time_seconds -= 60;
153
 
                time_minutes++;
154
 
                if( time_minutes >= 60 ) {
155
 
                        time_minutes -= 60;
156
 
                        time_hours++;
157
 
                        if( time_hours >= 24 )
158
 
                                time_hours -= 24;
 
133
        // loop through pending events
 
134
        while( int event = _button.get_event() )
 
135
        {
 
136
                switch( event )
 
137
                {
 
138
                case 1:
 
139
                        // short press
 
140
                        switch( _major_mode ) {
 
141
                        case MAIN_MODE_IDX:
 
142
                                switch( _minor_mode ) {
 
143
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
 
144
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
 
145
                                }
 
146
                                break;
 
147
                        }
 
148
                        break;
 
149
 
 
150
                case 2:
 
151
                        // long press
 
152
                        switch( _major_mode ) {
 
153
                        case MAIN_MODE_IDX:
 
154
                                if( ++_minor_mode >= 3 )
 
155
                                        _minor_mode = 0;
 
156
                                switch( _minor_mode ) {
 
157
                                case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
158
                                }
 
159
                                break;
 
160
                        }
 
161
                        break;
 
162
 
 
163
                case 3:
 
164
                        // looooong press (change major mode)
 
165
                        if( ++_major_mode > 0 )
 
166
                                _major_mode = 0;
 
167
                        switch( _major_mode ) {
 
168
                        case MAIN_MODE_IDX: _minor_mode = 0; break;
 
169
                        }
 
170
                        activate_minor_mode();
 
171
                        break;
159
172
                }
160
173
        }
161
174
}
162
175
 
163
176
 
164
 
// turn an led on/off
165
 
void ledOn( int num, bool on )
166
 
{
167
 
        if( num < 0 || num > 9 ) return;
168
 
 
169
 
        // convert to pin no.
170
 
        num += 4;
171
 
 
172
 
        // pin 4 needs to be inverted (it's driving a PNP)
173
 
        // NOTE: PIN 4 TEMPORARILY DISABLED
174
 
        if( num == 4 ) on = true; //!on
175
 
 
176
 
        digitalWrite( num, on? HIGH : LOW );
177
 
}
178
 
 
179
 
 
180
 
// draw a segment for the test display
181
 
void drawNextSegment_test( bool reset )
 
177
// draw a display segment
 
178
void draw_next_segment( bool reset )
182
179
{
183
180
        // keep track of segment
184
 
        static unsigned int segment = 0;
185
 
        if( reset ) segment = 0;
186
 
        segment++;
187
 
 
188
 
        // turn on inside and outside LEDs
189
 
        ledOn( 0, true );
190
 
        ledOn( 9, true );
191
 
 
192
 
        // display segment number in binary across in the inside LEDs,
193
 
        // with the LED on pin 12 showing the least-significant bit
194
 
        for( int a = 0; a < 8; a++ )
195
 
                ledOn( 8 - a, ( segment >> a ) & 1 );
196
 
}
197
 
 
198
 
 
199
 
// draw a segment for the time display
200
 
void drawNextSegment_time( bool reset )
201
 
{
202
 
        static int second = 0;
203
 
        static int segment = 0;
204
 
 
205
 
        // handle display reset
 
181
#if CLOCK_FORWARD
 
182
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
183
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
184
#else
 
185
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
186
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
187
#endif
 
188
 
 
189
        // frame reset
206
190
        if( reset ) {
207
 
                second = 0;
208
 
                segment = 0;
209
 
        }
210
 
 
211
 
        // what needs to be drawn?
212
 
        bool draw_tick = !segment && second % 5 == 0;
213
 
        bool draw_second = !segment && second == time_seconds;
214
 
        bool draw_minute = !segment && second == time_minutes;
215
 
        bool draw_hour = !segment && second == time_hours;
216
 
 
217
 
        // set the LEDs
218
 
        ledOn( 9, true );
219
 
        ledOn( 8, draw_tick || draw_minute );
220
 
        for( int a = 6; a <= 7; a++ )
221
 
                ledOn( a, draw_minute || draw_second );
222
 
        for( int a = 0; a <= 5; a++ )
223
 
                ledOn( a, draw_minute || draw_second || draw_hour );
224
 
 
225
 
        // inc position
226
 
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
227
 
                segment = 0;
228
 
                second++;
229
 
        }
230
 
}
231
 
 
232
 
 
233
 
// draw a display segment
234
 
void drawNextSegment( bool reset )
235
 
{
236
 
        static int draw_mode = 0;
237
 
 
238
 
        // handle mode switch requests
239
 
        if( reset && inc_draw_mode ) {
240
 
                inc_draw_mode = false;
241
 
                draw_mode++;
242
 
                if( draw_mode >= 2 )
243
 
                        draw_mode = 0;
244
 
        }
245
 
 
246
 
        // draw the segment
247
 
        switch( draw_mode ) {
248
 
        case 0: drawNextSegment_test( reset ); break;
249
 
        case 1: drawNextSegment_time( reset ); break;
250
 
        }
 
191
                switch( _major_mode ) {
 
192
                case MAIN_MODE_IDX:
 
193
                        switch( _minor_mode ) {
 
194
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
 
195
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
 
196
                        }
 
197
                        break;
 
198
                }
 
199
        }
 
200
 
 
201
        // draw
 
202
        switch( _major_mode ) {
 
203
        case MAIN_MODE_IDX:
 
204
                switch( _minor_mode ) {
 
205
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
 
206
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
 
207
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
 
208
                }
 
209
                break;
 
210
        }
 
211
 
 
212
#if CLOCK_FORWARD
 
213
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
214
#else
 
215
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
216
#endif
251
217
}
252
218
 
253
219
 
254
220
// calculate time constants when a new pulse has occurred
255
 
void calculateSegmentTimes()
 
221
void calculate_segment_times()
256
222
{
257
223
        // check for overflows, and only recalculate times if there isn't
258
224
        // one (if there is, we'll just go with the last pulse's times)
259
 
        if( new_pulse_at > last_pulse_at )
 
225
        if( _new_pulse_at > _last_pulse_at )
260
226
        {
261
227
                // new segment stepping times
262
 
                unsigned long delta = new_pulse_at - last_pulse_at;
263
 
                segment_step = delta / NUM_SEGMENTS;
264
 
                segment_step_sub = 0;
265
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
228
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
229
                _segment_step = delta / NUM_SEGMENTS;
 
230
                _segment_step_sub = 0;
 
231
                _segment_step_sub_step = delta % NUM_SEGMENTS;
266
232
        }
267
233
 
268
234
        // now we have dealt with this pulse, save the pulse time and
269
235
        // clear new_pulse_at, ready for the next pulse
270
 
        last_pulse_at = new_pulse_at;
271
 
        new_pulse_at = 0;
 
236
        _last_pulse_at = _new_pulse_at;
 
237
        _new_pulse_at = 0;
272
238
}
273
239
 
274
240
 
275
241
// wait until it is time to draw the next segment or a new pulse has
276
242
// occurred
277
 
void waitTillNextSegment( bool reset )
 
243
void wait_till_end_of_segment( bool reset )
278
244
{
279
245
        static unsigned long end_time = 0;
280
246
 
281
247
        // handle reset
282
248
        if( reset )
283
 
                end_time = last_pulse_at;
 
249
                end_time = _last_pulse_at;
284
250
 
285
251
        // work out the time that this segment should be displayed until
286
 
        end_time += segment_step;
287
 
        segment_step_sub += segment_step_sub_step;
288
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
289
 
                segment_step_sub -= NUM_SEGMENTS;
 
252
        end_time += _segment_step;
 
253
        _segment_step_sub += _segment_step_sub_step;
 
254
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
255
                _segment_step_sub -= NUM_SEGMENTS;
290
256
                end_time++;
291
257
        }
292
258
 
293
259
        // wait
294
 
        while( micros() < end_time && !new_pulse_at );
 
260
        while( micros() < end_time && !_new_pulse_at );
295
261
}
296
262
 
297
263
 
298
264
// ISR to handle the pulses from the fan's tachiometer
299
 
void fanPulseHandler()
 
265
void fan_pulse_handler()
300
266
{
301
267
        // the fan actually sends two pulses per revolution. These pulses
302
268
        // may not be exactly evenly distributed around the rotation, so
307
273
        if( !ignore )
308
274
        {
309
275
                // set a new pulse time
310
 
                new_pulse_at = micros();
 
276
                _new_pulse_at = micros();
311
277
        }
312
278
}
313
279
 
316
282
void setup()
317
283
{
318
284
        // set up an interrupt handler on pin 2 to nitice fan pulses
319
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
285
        attachInterrupt( 0, fan_pulse_handler, RISING );
320
286
        digitalWrite( 2, HIGH );
321
287
  
322
288
        // set up output pins (4 to 13) for the led array
326
292
        // set up mode-switch button on pin 3
327
293
        pinMode( 3, INPUT );
328
294
        digitalWrite( 3, HIGH );
329
 
 
330
 
        // get the time from the real-time clock
331
 
        int rtc_data[ 7 ];
332
 
        RTC.get( rtc_data, true );
333
 
        time_hours = rtc_data[ DS1307_HR ];
334
 
        time_minutes = rtc_data[ DS1307_MIN ];
335
 
        time_seconds = rtc_data[ DS1307_SEC ];
336
 
 
337
 
        // serial comms
338
 
        Serial.begin( 9600 );
 
295
        static int event_times[] = { 5, 500, 4000, 0 };
 
296
        _button.set_event_times( event_times );
 
297
 
 
298
        // initialise RTC
 
299
        Time::init();
 
300
 
 
301
        // activate the minor mode
 
302
        switch( _major_mode ) {
 
303
        case MAIN_MODE_IDX: activate_minor_mode(); break;
 
304
        }
339
305
}
340
306
 
341
307
 
343
309
void loop()
344
310
{
345
311
        // if there has been a new pulse, we'll be resetting the display
346
 
        bool reset = new_pulse_at? true : false;
 
312
        bool reset = _new_pulse_at? true : false;
 
313
 
 
314
        // update button
 
315
        _button.update();
347
316
 
348
317
        // only do this stuff at the start of a display cycle, to ensure
349
318
        // that no state changes mid-display
350
319
        if( reset )
351
320
        {
352
 
                // check buttons
353
 
                checkButtons();
 
321
                // calculate segment times
 
322
                calculate_segment_times();
354
323
 
355
324
                // keep track of time
356
 
                trackTime();
 
325
                Time::update();
 
326
 
 
327
                // perform button events
 
328
                do_button_events();
357
329
        }
358
330
 
359
331
        // draw this segment
360
 
        drawNextSegment( reset );
361
 
 
362
 
        // do we need to recalculate segment times?
363
 
        if( reset )
364
 
                calculateSegmentTimes();
 
332
        draw_next_segment( reset );
365
333
 
366
334
        // wait till it's time to draw the next segment
367
 
        waitTillNextSegment( reset );
 
335
        wait_till_end_of_segment( reset );
368
336
}