29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
40
LEDs that turn on and off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
56
position. You will need to experiment to discover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
80
78
#include "config.h"
82
#include "mode_switcher.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
85
86
//_____________________________________________________________________________
89
89
// when non-zero, the time (in microseconds) of a new fan pulse that
90
90
// has just occurred, which means that segment drawing needs to be
92
static unsigned long new_pulse_at = 0;
92
static unsigned long _new_pulse_at = 0;
94
94
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long last_pulse_at = 0;
95
static unsigned long _last_pulse_at = 0;
97
97
// duration (in microseconds) that a segment should be displayed
98
static unsigned long segment_step = 0;
98
static unsigned long _segment_step = 0;
100
100
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long segment_step_sub_step = 0;
102
static unsigned long segment_step_sub = 0;
104
// flag to indicate that the drawing mode should be cycled to the next one
105
static bool inc_draw_mode = false;
107
// a bounce-managed button
108
static Button button( 3 );
101
static unsigned long _segment_step_sub_step = 0;
102
static unsigned long _segment_step_sub = 0;
105
static Button _button( 3 );
108
static int _major_mode = 0;
109
static int _minor_mode = 0;
111
#define MAIN_MODE_IDX 0
113
#define ANALOGUE_CLOCK_IDX 0
114
#define DIGITAL_CLOCK_IDX 1
115
#define TEST_PATTERN_IDX 2
110
117
//_____________________________________________________________________________
114
// check for button presses
121
// activate the current minor mode
122
void activate_minor_mode()
118
int event = button.update();
123
inc_draw_mode = true;
124
switch( _minor_mode ) {
125
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
126
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
129
// turn an led on/off
130
void ledOn( int num, bool on )
130
// perform button events
131
void do_button_events()
132
if( num < 0 || num > 9 ) return;
134
// convert to pin no.
137
// pin 4 needs to be inverted (it's driving a PNP)
138
if( num == 4 ) on = !on;
140
digitalWrite( num, on? HIGH : LOW );
133
// loop through pending events
134
while( int event = _button.get_event() )
140
switch( _major_mode ) {
142
switch( _minor_mode ) {
143
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
144
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
152
switch( _major_mode ) {
154
if( ++_minor_mode >= 3 )
156
switch( _minor_mode ) {
157
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
164
// looooong press (change major mode)
165
if( ++_major_mode > 0 )
167
switch( _major_mode ) {
168
case MAIN_MODE_IDX: _minor_mode = 0; break;
170
activate_minor_mode();
144
177
// draw a display segment
145
void drawNextSegment( bool reset )
178
void draw_next_segment( bool reset )
147
static ModeSwitcher mode_switcher;
148
static bool init = false;
152
mode_switcher.activate();
155
180
// keep track of segment
156
181
#if CLOCK_FORWARD
157
182
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
161
186
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
191
switch( _major_mode ) {
193
switch( _minor_mode ) {
194
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
195
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
165
Drawer &drawer = mode_switcher.get_drawer();
166
if( reset ) drawer.draw_reset();
167
drawer.draw( segment );
202
switch( _major_mode ) {
204
switch( _minor_mode ) {
205
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
206
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
207
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
169
212
#if CLOCK_FORWARD
170
213
if( ++segment >= NUM_SEGMENTS ) segment = 0;
177
220
// calculate time constants when a new pulse has occurred
178
void calculateSegmentTimes()
221
void calculate_segment_times()
180
223
// check for overflows, and only recalculate times if there isn't
181
224
// one (if there is, we'll just go with the last pulse's times)
182
if( new_pulse_at > last_pulse_at )
225
if( _new_pulse_at > _last_pulse_at )
184
227
// new segment stepping times
185
unsigned long delta = new_pulse_at - last_pulse_at;
186
segment_step = delta / NUM_SEGMENTS;
187
segment_step_sub = 0;
188
segment_step_sub_step = delta % NUM_SEGMENTS;
228
unsigned long delta = _new_pulse_at - _last_pulse_at;
229
_segment_step = delta / NUM_SEGMENTS;
230
_segment_step_sub = 0;
231
_segment_step_sub_step = delta % NUM_SEGMENTS;
191
234
// now we have dealt with this pulse, save the pulse time and
192
235
// clear new_pulse_at, ready for the next pulse
193
last_pulse_at = new_pulse_at;
236
_last_pulse_at = _new_pulse_at;
198
241
// wait until it is time to draw the next segment or a new pulse has
200
void waitTillNextSegment( bool reset )
243
void wait_till_end_of_segment( bool reset )
202
245
static unsigned long end_time = 0;
206
end_time = last_pulse_at;
249
end_time = _last_pulse_at;
208
251
// work out the time that this segment should be displayed until
209
end_time += segment_step;
210
segment_step_sub += segment_step_sub_step;
211
if( segment_step_sub >= NUM_SEGMENTS ) {
212
segment_step_sub -= NUM_SEGMENTS;
252
end_time += _segment_step;
253
_segment_step_sub += _segment_step_sub_step;
254
if( _segment_step_sub >= NUM_SEGMENTS ) {
255
_segment_step_sub -= NUM_SEGMENTS;
217
while( micros() < end_time && !new_pulse_at );
260
while( micros() < end_time && !_new_pulse_at );
221
264
// ISR to handle the pulses from the fan's tachiometer
222
void fanPulseHandler()
265
void fan_pulse_handler()
224
267
// the fan actually sends two pulses per revolution. These pulses
225
268
// may not be exactly evenly distributed around the rotation, so
249
292
// set up mode-switch button on pin 3
250
293
pinMode( 3, INPUT );
251
294
digitalWrite( 3, HIGH );
252
button.add_event_at( 5, 1 );
253
button.add_event_at( 1000, 2 );
254
button.add_event_at( 4000, 3 );
257
Serial.begin( 9600 );
295
static int event_times[] = { 5, 500, 4000, 0 };
296
_button.set_event_times( event_times );
301
// activate the minor mode
302
switch( _major_mode ) {
303
case MAIN_MODE_IDX: activate_minor_mode(); break;
264
311
// if there has been a new pulse, we'll be resetting the display
265
bool reset = new_pulse_at? true : false;
312
bool reset = _new_pulse_at? true : false;
267
317
// only do this stuff at the start of a display cycle, to ensure
268
318
// that no state changes mid-display
321
// calculate segment times
322
calculate_segment_times();
274
324
// keep track of time
275
Time &time = Time::get_instance();
327
// perform button events
279
331
// draw this segment
280
drawNextSegment( reset );
282
// do we need to recalculate segment times?
284
calculateSegmentTimes();
332
draw_next_segment( reset );
286
334
// wait till it's time to draw the next segment
287
waitTillNextSegment( reset );
335
wait_till_end_of_segment( reset );