29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
40
LEDs that turn on and off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
56
position. You will need to experiment to discover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
80
79
#include "button.h"
82
#include "switcher_major_mode.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
85
#include "settings_mode.h"
87
#include "text_renderer.h"
85
90
//_____________________________________________________________________________
89
93
// when non-zero, the time (in microseconds) of a new fan pulse that
90
94
// has just occurred, which means that segment drawing needs to be
92
static unsigned long new_pulse_at = 0;
96
static unsigned long _new_pulse_at = 0;
94
98
// the time (in microseconds) when the last fan pulse occurred
95
static unsigned long last_pulse_at = 0;
99
static unsigned long _last_pulse_at = 0;
97
101
// duration (in microseconds) that a segment should be displayed
98
static unsigned long segment_step = 0;
102
static unsigned long _segment_step = 0;
100
104
// remainder after divisor and a tally of the remainders for each segment
101
static unsigned long segment_step_sub_step = 0;
102
static unsigned long segment_step_sub = 0;
105
static unsigned long _segment_step_sub_step = 0;
106
static unsigned long _segment_step_sub = 0;
105
static Button button( 3 );
108
static int major_mode = 0;
110
#define MAX_MAJOR_MODES 5
113
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
109
static Button _button( 3 );
112
static int _major_mode = 0;
113
static int _minor_mode = 0;
115
#define MAIN_MODE_IDX 1
116
#define SETTINGS_MODE_IDX 0
118
#define ANALOGUE_CLOCK_IDX 0
119
#define DIGITAL_CLOCK_IDX 1
120
#define TEST_PATTERN_IDX 2
115
122
//_____________________________________________________________________________
126
// activate the current minor mode
127
void activate_minor_mode()
129
switch( _minor_mode ) {
130
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
131
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
140
// activate major mode
141
void activate_major_mode()
143
switch( _major_mode ) {
144
case MAIN_MODE_IDX: activate_minor_mode(); break;
145
case SETTINGS_MODE_IDX: settings_mode_activate(); break;
119
154
// perform button events
120
void doButtonEvents()
155
void do_button_events()
122
157
// loop through pending events
123
while( int event = button.get_event() )
158
while( int event = _button.get_event() )
129
major_modes[ major_mode ]->press();
164
switch( _major_mode ) {
166
switch( _minor_mode ) {
167
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
168
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
171
case SETTINGS_MODE_IDX: settings_mode_press(); break;
134
major_modes[ major_mode ]->long_press();
177
switch( _major_mode ) {
179
if( ++_minor_mode >= 3 )
181
activate_minor_mode();
183
case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
138
188
// looooong press (change major mode)
140
if( ++major_mode >= MAX_MAJOR_MODES )
142
} while( major_modes[ major_mode ] == NULL );
143
major_modes[ major_mode ]->activate();
189
if( ++_major_mode > 1 )
191
activate_major_mode();
151
198
// draw a display segment
152
void drawNextSegment( bool reset )
199
void draw_next_segment( bool reset )
154
201
// keep track of segment
155
202
#if CLOCK_FORWARD
160
207
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
210
// reset the text renderer
211
TextRenderer::reset_buffer();
215
switch( _major_mode ) {
217
switch( _minor_mode ) {
218
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
219
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
222
case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
225
// tell the text services we're starting a new frame
164
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
165
if( reset ) drawer.draw_reset();
166
drawer.draw( segment );
230
switch( _major_mode ) {
232
switch( _minor_mode ) {
233
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
234
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
235
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
238
case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
241
// draw any text that was rendered
242
TextRenderer::output_buffer();
168
244
#if CLOCK_FORWARD
169
245
if( ++segment >= NUM_SEGMENTS ) segment = 0;
176
252
// calculate time constants when a new pulse has occurred
177
void calculateSegmentTimes()
253
void calculate_segment_times()
179
255
// check for overflows, and only recalculate times if there isn't
180
256
// one (if there is, we'll just go with the last pulse's times)
181
if( new_pulse_at > last_pulse_at )
257
if( _new_pulse_at > _last_pulse_at )
183
259
// new segment stepping times
184
unsigned long delta = new_pulse_at - last_pulse_at;
185
segment_step = delta / NUM_SEGMENTS;
186
segment_step_sub = 0;
187
segment_step_sub_step = delta % NUM_SEGMENTS;
260
unsigned long delta = _new_pulse_at - _last_pulse_at;
261
_segment_step = delta / NUM_SEGMENTS;
262
_segment_step_sub = 0;
263
_segment_step_sub_step = delta % NUM_SEGMENTS;
190
266
// now we have dealt with this pulse, save the pulse time and
191
267
// clear new_pulse_at, ready for the next pulse
192
last_pulse_at = new_pulse_at;
268
_last_pulse_at = _new_pulse_at;
197
273
// wait until it is time to draw the next segment or a new pulse has
199
void waitTillEndOfSegment( bool reset )
275
void wait_till_end_of_segment( bool reset )
201
277
static unsigned long end_time = 0;
205
end_time = last_pulse_at;
281
end_time = _last_pulse_at;
207
283
// work out the time that this segment should be displayed until
208
end_time += segment_step;
209
segment_step_sub += segment_step_sub_step;
210
if( segment_step_sub >= NUM_SEGMENTS ) {
211
segment_step_sub -= NUM_SEGMENTS;
284
end_time += _segment_step;
285
_segment_step_sub += _segment_step_sub_step;
286
if( _segment_step_sub >= NUM_SEGMENTS ) {
287
_segment_step_sub -= NUM_SEGMENTS;
216
while( micros() < end_time && !new_pulse_at );
292
while( micros() < end_time && !_new_pulse_at );
220
296
// ISR to handle the pulses from the fan's tachiometer
221
void fanPulseHandler()
297
void fan_pulse_handler()
223
299
// the fan actually sends two pulses per revolution. These pulses
224
300
// may not be exactly evenly distributed around the rotation, so
248
324
// set up mode-switch button on pin 3
249
325
pinMode( 3, INPUT );
250
326
digitalWrite( 3, HIGH );
251
static int event_times[] = { 5, 1000, 4000, 0 };
252
button.set_event_times( event_times );
254
// set up major modes
255
static SwitcherMajorMode switcher_major_mode;
257
major_modes[ mode++ ] = &switcher_major_mode;
258
major_modes[ 0 ]->activate();
327
static int event_times[] = { 5, 500, 4000, 0 };
328
_button.set_event_times( event_times );
333
// activate the minor mode
334
activate_major_mode();
265
341
// if there has been a new pulse, we'll be resetting the display
266
bool reset = new_pulse_at? true : false;
342
bool reset = _new_pulse_at? true : false;
271
347
// only do this stuff at the start of a display cycle, to ensure
272
348
// that no state changes mid-display
275
351
// calculate segment times
276
calculateSegmentTimes();
352
calculate_segment_times();
278
354
// keep track of time
279
Time &time = Time::get_instance();
282
357
// perform button events
286
361
// draw this segment
287
drawNextSegment( reset );
362
draw_next_segment( reset );
289
364
// wait till it's time to draw the next segment
290
waitTillEndOfSegment( reset );
365
wait_till_end_of_segment( reset );