/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-03-21 19:37:33 UTC
  • Revision ID: tim@ed.am-20120321193733-29euxt0t0h9dwsj3
added .dep directories to bzrignore

Show diffs side-by-side

added added

removed removed

 
1
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
1
2
/*
2
 
 * propeller-clock.pde
 
3
 * propeller-clock.ino
3
4
 *
4
 
 * Copyright (C) 2011 Tim Marston <edam@waxworlds.org>
 
5
 * Copyright (C) 2011 Tim Marston <tim@ed.am> and Dan Marston.
5
6
 *
6
7
 * This file is part of propeller-clock (hereafter referred to as "this
7
 
 * program"). See http://ed.am/software/arduino/propeller-clock for more
 
8
 * program"). See http://ed.am/dev/software/arduino/propeller-clock for more
8
9
 * information.
9
10
 *
10
11
 * This program is free software: you can redistribute it and/or modify
23
24
 
24
25
/******************************************************************************
25
26
 
26
 
  For a schematic, see propeller-clock.sch.
27
 
 
28
 
  Set up as follows:
29
 
 
30
 
  - a PC fan is wired up to the 12V supply.
31
 
 
32
 
  - the fan's SENSE (tachiometer) pin is connected to pin 2 on the
33
 
    arduino.
34
 
 
35
 
  - the pins 4 to 13 on the arduino should directly drive an LED (the
36
 
    LED on pin 4 is in the centre of the clock face and the LED on pin
37
 
    13 is at the outside.
38
 
 
39
 
  - if a longer hand (and a larger clock face) is desired, pin 4 can
40
 
    be used to indirectly drive (via a MOSFET) multiple LEDs which
41
 
    turn on and off in unison in the centre of the clock.
42
 
 
43
 
  - a button should be attached to pin 3 that grounds it when pressed.
44
 
 
45
 
  Implementation details:
46
 
 
47
 
  - the timing of the drawing of the clock face is recalculated with
48
 
    every rotation of the propeller (for maximum update speed).
49
 
 
50
 
  - pressing the button cycles between display modes
51
 
 
52
 
  - holding down the button for 2 seconds enters "set time" mode. In
53
 
    this mode, the fan must be held still and the LEDs will indicate
54
 
    what number is being entered for each time digit. Pressing the
55
 
    button increments the current digit. Holding it down moves to the
56
 
    next digit (or leaves "set time" mode when there are no more). In
57
 
    order, the digits (with accepted values) are: hours-tens (0 to 2),
58
 
    hours-ones (0 to 9), minutes-tens (0 to 5), minutes-ones (0 to 9).
 
27
Set up:
 
28
 
 
29
 * a PC fan is wired up to a 12V power supply
 
30
 
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
 
33
 
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
 
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
 
36
   13 is at the outside.
 
37
 
 
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
 
39
   used to indirectly drive a transistor which in turn drives several
 
40
   LEDs that turn on and off in unison in the centre of the clock.
 
41
 
 
42
 * a button should be attached to pin 3 that grounds it when pressed.
 
43
 
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
 
45
 
 
46
Implementation details:
 
47
 
 
48
 * for a schematic, see ../project/propeller-clock.sch.
 
49
 
 
50
 * the timing of the drawing of the clock face is recalculated with
 
51
   every rotation of the propeller.
 
52
    
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
 
54
   software skips every other one. This means that the clock may
 
55
   appear upside-down if started with the propeller in the wrong
 
56
   position. You will need to experiment to discover the position that
 
57
   the propeller must be in when starting the clock.
 
58
    
 
59
Usage instructions:
 
60
 
 
61
 * pressing the button cycles between variations of the current
 
62
   display mode.
 
63
  
 
64
 * pressing and holding the button for a second cycles between display
 
65
   modes (e.g., analogue and digital).
 
66
 
 
67
 * pressing and holding the button for 5 seconds enters "time set"
 
68
   mode. In this mode, the following applies:
 
69
    - the field that is being set flashes
 
70
    - pressing the button increments the field currently being set
 
71
    - pressing and holding the button for a second cycles through the
 
72
      fields that can be set
 
73
    - pressing and holding the button for 5 seconds sets the time and
 
74
      exits "time set" mode
59
75
 
60
76
******************************************************************************/
61
77
 
62
 
 
63
 
#include <Bounce.h>
 
78
#include "config.h"
 
79
#include "button.h"
 
80
#include "time.h"
 
81
#include "Arduino.h"
 
82
#include "analogue_clock.h"
 
83
#include "digital_clock.h"
 
84
#include "test_pattern.h"
 
85
#include "settings_mode.h"
 
86
#include "text.h"
 
87
#include "text_renderer.h"
 
88
#include "common.h"
64
89
 
65
90
//_____________________________________________________________________________
66
91
//                                                                         data
67
92
 
68
 
 
69
93
// when non-zero, the time (in microseconds) of a new fan pulse that
70
94
// has just occurred, which means that segment drawing needs to be
71
95
// restarted
72
 
static unsigned long new_pulse_at = 0;
 
96
static unsigned long _new_pulse_at = 0;
73
97
 
74
98
// the time (in microseconds) when the last fan pulse occurred
75
 
static unsigned long last_pulse_at = 0;
 
99
static unsigned long _last_pulse_at = 0;
76
100
 
77
101
// duration (in microseconds) that a segment should be displayed
78
 
static unsigned long segment_step = 0;
 
102
static unsigned long _segment_step = 0;
79
103
 
80
104
// remainder after divisor and a tally of the remainders for each segment
81
 
static unsigned long segment_step_sub_step = 0;
82
 
static unsigned long segment_step_sub = 0;
83
 
 
84
 
// flag to indicate that the drawing mode should be cycled to the next one
85
 
static bool inc_draw_mode = false;
86
 
 
87
 
// a bounce-managed button
88
 
static Bounce button( 3, 5 );
89
 
 
90
 
// the time
91
 
static int time_hours = 0;
92
 
static int time_minutes = 0;
93
 
static int time_seconds = 0;
94
 
 
95
 
// number of segments in a full display (rotation) is 60 (one per
96
 
// second) times the desired number of sub-divisions of a second
97
 
#define NUM_SECOND_SEGMENTS 5
98
 
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
105
static unsigned long _segment_step_sub_step = 0;
 
106
static unsigned long _segment_step_sub = 0;
 
107
 
 
108
// the button
 
109
static Button _button( 3 );
 
110
 
 
111
// modes
 
112
static int _major_mode = 0;
 
113
static int _minor_mode = 0;
 
114
 
 
115
#define MAIN_MODE_IDX 1
 
116
#define SETTINGS_MODE_IDX 0
 
117
 
 
118
#define ANALOGUE_CLOCK_IDX 0
 
119
#define DIGITAL_CLOCK_IDX 1
 
120
#define TEST_PATTERN_IDX 2
99
121
 
100
122
//_____________________________________________________________________________
101
123
//                                                                         code
102
124
 
103
125
 
104
 
// check for button presses
105
 
void checkButtons()
106
 
{
107
 
        // update buttons
108
 
        button.update();
109
 
 
110
 
        // notice button presses
111
 
        if( button.risingEdge() )
112
 
                inc_draw_mode = true;
113
 
}
114
 
 
115
 
 
116
 
// keep track of time
117
 
void trackTime()
118
 
{
119
 
        // previous time and any carried-over milliseconds
120
 
        static unsigned long last_time = millis();
121
 
        static unsigned long carry = 0;
122
 
 
123
 
        // how many milliseonds have elapsed since we last checked?
124
 
        unsigned long next_time = millis();
125
 
        unsigned long delta = next_time - last_time + carry;
126
 
 
127
 
        // update the previous time and carried-over milliseconds
128
 
        last_time = next_time;
129
 
        carry = delta % 1000;
130
 
 
131
 
        // add the seconds that have passed to the time
132
 
        time_seconds += delta / 1000;
133
 
        while( time_seconds >= 60 ) {
134
 
                time_seconds -= 60;
135
 
                time_minutes++;
136
 
                if( time_minutes >= 60 ) {
137
 
                        time_minutes -= 60;
138
 
                        time_hours++;
139
 
                        if( time_hours >= 24 )
140
 
                                time_hours -= 24;
 
126
// activate the current minor mode
 
127
void activate_minor_mode()
 
128
{
 
129
        switch( _minor_mode ) {
 
130
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
 
131
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
132
        }
 
133
 
 
134
        // reset text
 
135
        Text::reset();
 
136
        leds_off();
 
137
}
 
138
 
 
139
 
 
140
// activate major mode
 
141
void activate_major_mode()
 
142
{
 
143
        switch( _major_mode ) {
 
144
        case MAIN_MODE_IDX: activate_minor_mode(); break;
 
145
        case SETTINGS_MODE_IDX: settings_mode_activate(); break;
 
146
        }
 
147
 
 
148
        // reset text
 
149
        Text::reset();
 
150
        leds_off();
 
151
}
 
152
 
 
153
 
 
154
// perform button events
 
155
void do_button_events()
 
156
{
 
157
        // loop through pending events
 
158
        while( int event = _button.get_event() )
 
159
        {
 
160
                switch( event )
 
161
                {
 
162
                case 1:
 
163
                        // short press
 
164
                        switch( _major_mode ) {
 
165
                        case MAIN_MODE_IDX:
 
166
                                switch( _minor_mode ) {
 
167
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
 
168
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
 
169
                                }
 
170
                                break;
 
171
                        case SETTINGS_MODE_IDX: settings_mode_press(); break;
 
172
                        }
 
173
                        break;
 
174
 
 
175
                case 2:
 
176
                        // long press
 
177
                        switch( _major_mode ) {
 
178
                        case MAIN_MODE_IDX:
 
179
                                if( ++_minor_mode >= 3 )
 
180
                                        _minor_mode = 0;
 
181
                                activate_minor_mode();
 
182
                                break;
 
183
                        case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
 
184
                        }
 
185
                        break;
 
186
 
 
187
                case 3:
 
188
                        // looooong press (change major mode)
 
189
                        if( ++_major_mode > 1 )
 
190
                                _major_mode = 0;
 
191
                        activate_major_mode();
 
192
                        break;
141
193
                }
142
194
        }
143
195
}
144
196
 
145
197
 
146
 
// draw a segment for the test display
147
 
void drawNextSegment_test( bool reset )
 
198
// draw a display segment
 
199
void draw_next_segment( bool reset )
148
200
{
149
201
        // keep track of segment
150
 
        static unsigned int segment = 0;
151
 
        if( reset ) segment = 0;
152
 
        segment++;
153
 
 
154
 
        // turn on inside and outside LEDs
155
 
        digitalWrite( 4, HIGH );
156
 
        digitalWrite( 13, HIGH );
157
 
 
158
 
        // display segment number in binary across in the inside LEDs,
159
 
        // with the LED on pin 12 showing the least-significant bit
160
 
        for( int a = 0; a < 8; a++ )
161
 
                digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
162
 
}
163
 
 
164
 
 
165
 
// draw a segment for the time display
166
 
void drawNextSegment_time( bool reset )
167
 
{
168
 
        static unsigned int second = 0;
169
 
        static unsigned int segment = 0;
170
 
 
171
 
        // handle display reset
 
202
#if CLOCK_FORWARD
 
203
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
204
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
205
#else
 
206
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
207
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
208
#endif
 
209
 
 
210
        // reset the text renderer
 
211
        TextRenderer::reset_buffer();
 
212
 
 
213
        // frame reset
172
214
        if( reset ) {
173
 
                second = 0;
174
 
                segment = 0;
175
 
        }
176
 
 
177
 
        // what needs to be drawn?
178
 
        bool draw_tick = !segment && second % 5 == 0;
179
 
        bool draw_second = !segment && second == time_seconds;
180
 
        bool draw_minute = !segment && second == time_minute;
181
 
        bool draw_hour = !segment && second == time_hour;
182
 
 
183
 
        // set the LEDs
184
 
        digitalWrite( 13, HIGH );
185
 
        digitalWrite( 12, draw_tick || draw_minute );
186
 
        for( int a = 10; a <= 11; a++ )
187
 
                digitalWrite( a, draw_minute || draw_second );
188
 
        for( int a = 4; a <= 9; a++ )
189
 
                digitalWrite( 10, draw_minute | draw_second || draw_hour );
190
 
 
191
 
        // inc position
192
 
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
193
 
                segment = 0;
194
 
                second++;
195
 
        }
196
 
}
197
 
 
198
 
 
199
 
// draw a display segment
200
 
void drawNextSegment( bool reset )
201
 
{
202
 
        static int draw_mode = 0;
203
 
 
204
 
        // handle mode switch requests
205
 
        if( reset && inc_draw_mode ) {
206
 
                inc_draw_mode = false;
207
 
                draw_mode++;
208
 
                if( draw_mode >= 2 )
209
 
                        draw_mode = 0;
210
 
        }
211
 
 
212
 
        // draw the segment
213
 
        switch( draw_mode ) {
214
 
        case 0: drawNextSegment_test( reset ); break;
215
 
        case 1: drawNextSegment_time( reset ); break;
216
 
        }
 
215
                switch( _major_mode ) {
 
216
                case MAIN_MODE_IDX:
 
217
                        switch( _minor_mode ) {
 
218
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
 
219
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
 
220
                        }
 
221
                        break;
 
222
                case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
 
223
                }
 
224
 
 
225
                // tell the text services we're starting a new frame
 
226
                Text::draw_reset();
 
227
        }
 
228
 
 
229
        // draw
 
230
        switch( _major_mode ) {
 
231
        case MAIN_MODE_IDX:
 
232
                switch( _minor_mode ) {
 
233
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
 
234
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
 
235
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
 
236
                }
 
237
                break;
 
238
        case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
 
239
        }
 
240
 
 
241
        // draw any text that was rendered
 
242
        TextRenderer::output_buffer();
 
243
 
 
244
#if CLOCK_FORWARD
 
245
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
246
#else
 
247
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
248
#endif
217
249
}
218
250
 
219
251
 
220
252
// calculate time constants when a new pulse has occurred
221
 
void calculateSegmentTimes()
 
253
void calculate_segment_times()
222
254
{
223
255
        // check for overflows, and only recalculate times if there isn't
224
256
        // one (if there is, we'll just go with the last pulse's times)
225
 
        if( new_pulse_at > last_pulse_at )
 
257
        if( _new_pulse_at > _last_pulse_at )
226
258
        {
227
259
                // new segment stepping times
228
 
                unsigned long delta = new_pulse_at - last_pulse_at;
229
 
                segment_step = delta / NUM_SEGMENTS;
230
 
                segment_step_sub = 0;
231
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
260
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
261
                _segment_step = delta / NUM_SEGMENTS;
 
262
                _segment_step_sub = 0;
 
263
                _segment_step_sub_step = delta % NUM_SEGMENTS;
232
264
        }
233
265
 
234
266
        // now we have dealt with this pulse, save the pulse time and
235
267
        // clear new_pulse_at, ready for the next pulse
236
 
        last_pulse_at = new_pulse_at;
237
 
        new_pulse_at = 0;
 
268
        _last_pulse_at = _new_pulse_at;
 
269
        _new_pulse_at = 0;
238
270
}
239
271
 
240
272
 
241
273
// wait until it is time to draw the next segment or a new pulse has
242
274
// occurred
243
 
void waitTillNextSegment( bool reset )
 
275
void wait_till_end_of_segment( bool reset )
244
276
{
245
277
        static unsigned long end_time = 0;
246
278
 
247
279
        // handle reset
248
280
        if( reset )
249
 
                end_time = last_pulse_at;
 
281
                end_time = _last_pulse_at;
250
282
 
251
283
        // work out the time that this segment should be displayed until
252
 
        end_time += segment_step;
253
 
        segment_step_sub += segment_step_sub_step;
254
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
255
 
                segment_step_sub -= NUM_SEGMENTS;
 
284
        end_time += _segment_step;
 
285
        _segment_step_sub += _segment_step_sub_step;
 
286
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
287
                _segment_step_sub -= NUM_SEGMENTS;
256
288
                end_time++;
257
289
        }
258
290
 
259
291
        // wait
260
 
        while( micros() < end_time && !new_pulse_at );
 
292
        while( micros() < end_time && !_new_pulse_at );
261
293
}
262
294
 
263
295
 
264
296
// ISR to handle the pulses from the fan's tachiometer
265
 
void fanPulseHandler()
 
297
void fan_pulse_handler()
266
298
{
267
299
        // the fan actually sends two pulses per revolution. These pulses
268
300
        // may not be exactly evenly distributed around the rotation, so
273
305
        if( !ignore )
274
306
        {
275
307
                // set a new pulse time
276
 
                new_pulse_at = micros();
 
308
                _new_pulse_at = micros();
277
309
        }
278
310
}
279
311
 
282
314
void setup()
283
315
{
284
316
        // set up an interrupt handler on pin 2 to nitice fan pulses
285
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
317
        attachInterrupt( 0, fan_pulse_handler, RISING );
286
318
        digitalWrite( 2, HIGH );
287
319
  
288
320
        // set up output pins (4 to 13) for the led array
291
323
 
292
324
        // set up mode-switch button on pin 3
293
325
        pinMode( 3, INPUT );
294
 
 
295
 
        // serial comms
296
 
        Serial.begin( 9600 );
 
326
        digitalWrite( 3, HIGH );
 
327
        static int event_times[] = { 5, 500, 4000, 0 };
 
328
        _button.set_event_times( event_times );
 
329
 
 
330
        // initialise RTC
 
331
        Time::init();
 
332
 
 
333
        // activate the minor mode
 
334
        activate_major_mode();
297
335
}
298
336
 
299
337
 
301
339
void loop()
302
340
{
303
341
        // if there has been a new pulse, we'll be resetting the display
304
 
        bool reset = new_pulse_at? true : false;
 
342
        bool reset = _new_pulse_at? true : false;
 
343
 
 
344
        // update button
 
345
        _button.update();
305
346
 
306
347
        // only do this stuff at the start of a display cycle, to ensure
307
348
        // that no state changes mid-display
308
349
        if( reset )
309
350
        {
310
 
                // check buttons
311
 
                checkButtons();
 
351
                // calculate segment times
 
352
                calculate_segment_times();
312
353
 
313
354
                // keep track of time
314
 
                trackTime();
 
355
                Time::update();
 
356
 
 
357
                // perform button events
 
358
                do_button_events();
315
359
        }
316
360
 
317
361
        // draw this segment
318
 
        drawNextSegment( reset );
319
 
 
320
 
        // do we need to recalculate segment times?
321
 
        if( reset )
322
 
                calculateSegmentTimes();
 
362
        draw_next_segment( reset );
323
363
 
324
364
        // wait till it's time to draw the next segment
325
 
        waitTillNextSegment( reset );
 
365
        wait_till_end_of_segment( reset );
326
366
}