/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-03-21 20:35:28 UTC
  • Revision ID: tim@ed.am-20120321203528-wfhpych1tub75rgj
fixed bug initialising text services on mode activation

Show diffs side-by-side

added added

removed removed

28
28
 
29
29
 * a PC fan is wired up to a 12V power supply
30
30
 
31
 
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
32
 
   arduino.
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
33
33
 
34
 
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
   13 is at the outside.
37
37
 
38
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on anf off in unison in the centre of the clock.
 
40
   LEDs that turn on and off in unison in the centre of the clock.
41
41
 
42
42
 * a button should be attached to pin 3 that grounds it when pressed.
43
43
 
44
 
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
45
45
 
46
46
Implementation details:
47
47
 
50
50
 * the timing of the drawing of the clock face is recalculated with
51
51
   every rotation of the propeller.
52
52
    
53
 
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
   software skips every other one. This means that the clock may
55
55
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to dicsover the position that
 
56
   position. You will need to experiment to discover the position that
57
57
   the propeller must be in when starting the clock.
58
58
    
59
59
Usage instructions:
75
75
 
76
76
******************************************************************************/
77
77
 
78
 
 
79
 
#include <Bounce.h>
80
 
#include <DS1307.h>
81
 
#include <Wire.h>
 
78
#include "config.h"
 
79
#include "button.h"
 
80
#include "time.h"
 
81
#include "Arduino.h"
 
82
#include "analogue_clock.h"
 
83
#include "digital_clock.h"
 
84
#include "test_pattern.h"
 
85
#include "settings_mode.h"
 
86
#include "text.h"
 
87
#include "text_renderer.h"
 
88
#include "common.h"
82
89
 
83
90
//_____________________________________________________________________________
84
91
//                                                                         data
85
92
 
86
 
 
87
93
// when non-zero, the time (in microseconds) of a new fan pulse that
88
94
// has just occurred, which means that segment drawing needs to be
89
95
// restarted
90
 
static unsigned long new_pulse_at = 0;
 
96
static unsigned long _new_pulse_at = 0;
91
97
 
92
98
// the time (in microseconds) when the last fan pulse occurred
93
 
static unsigned long last_pulse_at = 0;
 
99
static unsigned long _last_pulse_at = 0;
94
100
 
95
101
// duration (in microseconds) that a segment should be displayed
96
 
static unsigned long segment_step = 0;
 
102
static unsigned long _segment_step = 0;
97
103
 
98
104
// remainder after divisor and a tally of the remainders for each segment
99
 
static unsigned long segment_step_sub_step = 0;
100
 
static unsigned long segment_step_sub = 0;
101
 
 
102
 
// flag to indicate that the drawing mode should be cycled to the next one
103
 
static bool inc_draw_mode = false;
104
 
 
105
 
// a bounce-managed button
106
 
static Bounce button( 3, 50 );
107
 
 
108
 
// the time
109
 
static int time_hours = 0;
110
 
static int time_minutes = 0;
111
 
static int time_seconds = 0;
112
 
 
113
 
// number of segments in a full display (rotation) is 60 (one per
114
 
// second) times the desired number of sub-divisions of a second
115
 
#define NUM_SECOND_SEGMENTS 5
116
 
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
105
static unsigned long _segment_step_sub_step = 0;
 
106
static unsigned long _segment_step_sub = 0;
 
107
 
 
108
// the button
 
109
static Button _button( 3 );
 
110
 
 
111
// modes
 
112
static int _major_mode = 0;
 
113
static int _minor_mode = 0;
 
114
 
 
115
#define MAIN_MODE_IDX 1
 
116
#define SETTINGS_MODE_IDX 0
 
117
 
 
118
#define ANALOGUE_CLOCK_IDX 0
 
119
#define DIGITAL_CLOCK_IDX 1
 
120
#define TEST_PATTERN_IDX 2
117
121
 
118
122
//_____________________________________________________________________________
119
123
//                                                                         code
120
124
 
121
125
 
122
 
// check for button presses
123
 
void checkButtons()
124
 
{
125
 
        // update buttons
126
 
        button.update();
127
 
 
128
 
        // notice button presses
129
 
        if( button.risingEdge() )
130
 
                inc_draw_mode = true;
131
 
}
132
 
 
133
 
 
134
 
// keep track of time
135
 
void trackTime()
136
 
{
137
 
        // previous time and any carried-over milliseconds
138
 
        static unsigned long last_time = millis();
139
 
        static unsigned long carry = 0;
140
 
 
141
 
        // how many milliseonds have elapsed since we last checked?
142
 
        unsigned long next_time = millis();
143
 
        unsigned long delta = next_time - last_time + carry;
144
 
 
145
 
        // update the previous time and carried-over milliseconds
146
 
        last_time = next_time;
147
 
        carry = delta % 1000;
148
 
 
149
 
        // add the seconds that have passed to the time
150
 
        time_seconds += delta / 1000;
151
 
        while( time_seconds >= 60 ) {
152
 
                time_seconds -= 60;
153
 
                time_minutes++;
154
 
                if( time_minutes >= 60 ) {
155
 
                        time_minutes -= 60;
156
 
                        time_hours++;
157
 
                        if( time_hours >= 24 )
158
 
                                time_hours -= 24;
 
126
// activate the current minor mode
 
127
void activate_minor_mode()
 
128
{
 
129
        // reset text
 
130
        Text::reset();
 
131
        leds_off();
 
132
 
 
133
        // give the mode a chance to init
 
134
        switch( _minor_mode ) {
 
135
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
 
136
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
137
        }
 
138
}
 
139
 
 
140
 
 
141
// activate major mode
 
142
void activate_major_mode()
 
143
{
 
144
        // reset text
 
145
        Text::reset();
 
146
        leds_off();
 
147
 
 
148
        // give the mode a chance to init
 
149
        switch( _major_mode ) {
 
150
        case MAIN_MODE_IDX: activate_minor_mode(); break;
 
151
        case SETTINGS_MODE_IDX: settings_mode_activate(); break;
 
152
        }
 
153
}
 
154
 
 
155
 
 
156
// perform button events
 
157
void do_button_events()
 
158
{
 
159
        // loop through pending events
 
160
        while( int event = _button.get_event() )
 
161
        {
 
162
                switch( event )
 
163
                {
 
164
                case 1:
 
165
                        // short press
 
166
                        switch( _major_mode ) {
 
167
                        case MAIN_MODE_IDX:
 
168
                                switch( _minor_mode ) {
 
169
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
 
170
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
 
171
                                }
 
172
                                break;
 
173
                        case SETTINGS_MODE_IDX: settings_mode_press(); break;
 
174
                        }
 
175
                        break;
 
176
 
 
177
                case 2:
 
178
                        // long press
 
179
                        switch( _major_mode ) {
 
180
                        case MAIN_MODE_IDX:
 
181
                                if( ++_minor_mode >= 3 )
 
182
                                        _minor_mode = 0;
 
183
                                activate_minor_mode();
 
184
                                break;
 
185
                        case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
 
186
                        }
 
187
                        break;
 
188
 
 
189
                case 3:
 
190
                        // looooong press (change major mode)
 
191
                        if( ++_major_mode > 1 )
 
192
                                _major_mode = 0;
 
193
                        activate_major_mode();
 
194
                        break;
159
195
                }
160
196
        }
161
197
}
162
198
 
163
199
 
164
 
// turn an led on/off
165
 
void ledOn( int num, bool on )
166
 
{
167
 
        if( num < 0 || num > 9 ) return;
168
 
 
169
 
        // convert to pin no.
170
 
        num += 4;
171
 
 
172
 
        // pin 4 needs to be inverted (it's driving a PNP)
173
 
        // NOTE: PIN 4 TEMPORARILY DISABLED
174
 
        if( num == 4 ) on = true; //!on
175
 
 
176
 
        digitalWrite( num, on? HIGH : LOW );
177
 
}
178
 
 
179
 
 
180
 
// draw a segment for the test display
181
 
void drawNextSegment_test( bool reset )
 
200
// draw a display segment
 
201
void draw_next_segment( bool reset )
182
202
{
183
203
        // keep track of segment
184
 
        static unsigned int segment = 0;
185
 
        if( reset ) segment = 0;
186
 
        segment++;
187
 
 
188
 
        // turn on inside and outside LEDs
189
 
        ledOn( 0, true );
190
 
        ledOn( 9, true );
191
 
 
192
 
        // display segment number in binary across in the inside LEDs,
193
 
        // with the LED on pin 12 showing the least-significant bit
194
 
        for( int a = 0; a < 8; a++ )
195
 
                ledOn( 8 - a, ( segment >> a ) & 1 );
196
 
}
197
 
 
198
 
 
199
 
// draw a segment for the time display
200
 
void drawNextSegment_time( bool reset )
201
 
{
202
 
        static int second = 0;
203
 
        static int segment = 0;
204
 
 
205
 
        // handle display reset
 
204
#if CLOCK_FORWARD
 
205
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
206
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
207
#else
 
208
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
209
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
210
#endif
 
211
 
 
212
        // reset the text renderer
 
213
        TextRenderer::reset_buffer();
 
214
 
 
215
        // frame reset
206
216
        if( reset ) {
207
 
                second = 0;
208
 
                segment = 0;
209
 
        }
210
 
 
211
 
        // what needs to be drawn?
212
 
        bool draw_tick = !segment && second % 5 == 0;
213
 
        bool draw_second = !segment && second == time_seconds;
214
 
        bool draw_minute = !segment && second == time_minutes;
215
 
        bool draw_hour = !segment && second == time_hours;
216
 
 
217
 
        // set the LEDs
218
 
        ledOn( 9, true );
219
 
        ledOn( 8, draw_tick || draw_minute );
220
 
        for( int a = 6; a <= 7; a++ )
221
 
                ledOn( a, draw_minute || draw_second );
222
 
        for( int a = 0; a <= 5; a++ )
223
 
                ledOn( a, draw_minute || draw_second || draw_hour );
224
 
 
225
 
        // inc position
226
 
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
227
 
                segment = 0;
228
 
                second++;
229
 
        }
230
 
}
231
 
 
232
 
 
233
 
// draw a display segment
234
 
void drawNextSegment( bool reset )
235
 
{
236
 
        static int draw_mode = 0;
237
 
 
238
 
        // handle mode switch requests
239
 
        if( reset && inc_draw_mode ) {
240
 
                inc_draw_mode = false;
241
 
                draw_mode++;
242
 
                if( draw_mode >= 2 )
243
 
                        draw_mode = 0;
244
 
        }
245
 
 
246
 
        // draw the segment
247
 
        switch( draw_mode ) {
248
 
        case 0: drawNextSegment_test( reset ); break;
249
 
        case 1: drawNextSegment_time( reset ); break;
250
 
        }
 
217
                switch( _major_mode ) {
 
218
                case MAIN_MODE_IDX:
 
219
                        switch( _minor_mode ) {
 
220
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
 
221
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
 
222
                        }
 
223
                        break;
 
224
                case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
 
225
                }
 
226
 
 
227
                // tell the text services we're starting a new frame
 
228
                Text::draw_reset();
 
229
        }
 
230
 
 
231
        // draw
 
232
        switch( _major_mode ) {
 
233
        case MAIN_MODE_IDX:
 
234
                switch( _minor_mode ) {
 
235
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
 
236
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
 
237
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
 
238
                }
 
239
                break;
 
240
        case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
 
241
        }
 
242
 
 
243
        // draw any text that was rendered
 
244
        TextRenderer::output_buffer();
 
245
 
 
246
#if CLOCK_FORWARD
 
247
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
248
#else
 
249
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
250
#endif
251
251
}
252
252
 
253
253
 
254
254
// calculate time constants when a new pulse has occurred
255
 
void calculateSegmentTimes()
 
255
void calculate_segment_times()
256
256
{
257
257
        // check for overflows, and only recalculate times if there isn't
258
258
        // one (if there is, we'll just go with the last pulse's times)
259
 
        if( new_pulse_at > last_pulse_at )
 
259
        if( _new_pulse_at > _last_pulse_at )
260
260
        {
261
261
                // new segment stepping times
262
 
                unsigned long delta = new_pulse_at - last_pulse_at;
263
 
                segment_step = delta / NUM_SEGMENTS;
264
 
                segment_step_sub = 0;
265
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
262
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
263
                _segment_step = delta / NUM_SEGMENTS;
 
264
                _segment_step_sub = 0;
 
265
                _segment_step_sub_step = delta % NUM_SEGMENTS;
266
266
        }
267
267
 
268
268
        // now we have dealt with this pulse, save the pulse time and
269
269
        // clear new_pulse_at, ready for the next pulse
270
 
        last_pulse_at = new_pulse_at;
271
 
        new_pulse_at = 0;
 
270
        _last_pulse_at = _new_pulse_at;
 
271
        _new_pulse_at = 0;
272
272
}
273
273
 
274
274
 
275
275
// wait until it is time to draw the next segment or a new pulse has
276
276
// occurred
277
 
void waitTillNextSegment( bool reset )
 
277
void wait_till_end_of_segment( bool reset )
278
278
{
279
279
        static unsigned long end_time = 0;
280
280
 
281
281
        // handle reset
282
282
        if( reset )
283
 
                end_time = last_pulse_at;
 
283
                end_time = _last_pulse_at;
284
284
 
285
285
        // work out the time that this segment should be displayed until
286
 
        end_time += segment_step;
287
 
        segment_step_sub += segment_step_sub_step;
288
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
289
 
                segment_step_sub -= NUM_SEGMENTS;
 
286
        end_time += _segment_step;
 
287
        _segment_step_sub += _segment_step_sub_step;
 
288
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
289
                _segment_step_sub -= NUM_SEGMENTS;
290
290
                end_time++;
291
291
        }
292
292
 
293
293
        // wait
294
 
        while( micros() < end_time && !new_pulse_at );
 
294
        while( micros() < end_time && !_new_pulse_at );
295
295
}
296
296
 
297
297
 
298
298
// ISR to handle the pulses from the fan's tachiometer
299
 
void fanPulseHandler()
 
299
void fan_pulse_handler()
300
300
{
301
301
        // the fan actually sends two pulses per revolution. These pulses
302
302
        // may not be exactly evenly distributed around the rotation, so
307
307
        if( !ignore )
308
308
        {
309
309
                // set a new pulse time
310
 
                new_pulse_at = micros();
 
310
                _new_pulse_at = micros();
311
311
        }
312
312
}
313
313
 
316
316
void setup()
317
317
{
318
318
        // set up an interrupt handler on pin 2 to nitice fan pulses
319
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
319
        attachInterrupt( 0, fan_pulse_handler, RISING );
320
320
        digitalWrite( 2, HIGH );
321
321
  
322
322
        // set up output pins (4 to 13) for the led array
326
326
        // set up mode-switch button on pin 3
327
327
        pinMode( 3, INPUT );
328
328
        digitalWrite( 3, HIGH );
329
 
 
330
 
        // get the time from the real-time clock
331
 
        int rtc_data[ 7 ];
332
 
        RTC.get( rtc_data, true );
333
 
        time_hours = rtc_data[ DS1307_HR ];
334
 
        time_minutes = rtc_data[ DS1307_MIN ];
335
 
        time_seconds = rtc_data[ DS1307_SEC ];
336
 
 
337
 
        // serial comms
338
 
        Serial.begin( 9600 );
 
329
        static int event_times[] = { 5, 500, 4000, 0 };
 
330
        _button.set_event_times( event_times );
 
331
 
 
332
        // initialise RTC
 
333
        Time::init();
 
334
 
 
335
        // activate the minor mode
 
336
        activate_major_mode();
339
337
}
340
338
 
341
339
 
343
341
void loop()
344
342
{
345
343
        // if there has been a new pulse, we'll be resetting the display
346
 
        bool reset = new_pulse_at? true : false;
 
344
        bool reset = _new_pulse_at? true : false;
 
345
 
 
346
        // update button
 
347
        _button.update();
347
348
 
348
349
        // only do this stuff at the start of a display cycle, to ensure
349
350
        // that no state changes mid-display
350
351
        if( reset )
351
352
        {
352
 
                // check buttons
353
 
                checkButtons();
 
353
                // calculate segment times
 
354
                calculate_segment_times();
354
355
 
355
356
                // keep track of time
356
 
                trackTime();
 
357
                Time::update();
 
358
 
 
359
                // perform button events
 
360
                do_button_events();
357
361
        }
358
362
 
359
363
        // draw this segment
360
 
        drawNextSegment( reset );
361
 
 
362
 
        // do we need to recalculate segment times?
363
 
        if( reset )
364
 
                calculateSegmentTimes();
 
364
        draw_next_segment( reset );
365
365
 
366
366
        // wait till it's time to draw the next segment
367
 
        waitTillNextSegment( reset );
 
367
        wait_till_end_of_segment( reset );
368
368
}