/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-03-21 20:35:28 UTC
  • Revision ID: tim@ed.am-20120321203528-wfhpych1tub75rgj
fixed bug initialising text services on mode activation

Show diffs side-by-side

added added

removed removed

28
28
 
29
29
 * a PC fan is wired up to a 12V power supply
30
30
 
31
 
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
32
 
   arduino.
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
33
33
 
34
 
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
   13 is at the outside.
37
37
 
38
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on anf off in unison in the centre of the clock.
 
40
   LEDs that turn on and off in unison in the centre of the clock.
41
41
 
42
42
 * a button should be attached to pin 3 that grounds it when pressed.
43
43
 
44
 
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
45
45
 
46
46
Implementation details:
47
47
 
50
50
 * the timing of the drawing of the clock face is recalculated with
51
51
   every rotation of the propeller.
52
52
    
53
 
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
   software skips every other one. This means that the clock may
55
55
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to dicsover the position that
 
56
   position. You will need to experiment to discover the position that
57
57
   the propeller must be in when starting the clock.
58
58
    
59
59
Usage instructions:
75
75
 
76
76
******************************************************************************/
77
77
 
78
 
 
79
 
#include <button.h>
80
78
#include "config.h"
 
79
#include "button.h"
81
80
#include "time.h"
82
 
#include "mode_switcher.h"
83
 
#include "drawer.h"
 
81
#include "Arduino.h"
 
82
#include "analogue_clock.h"
 
83
#include "digital_clock.h"
 
84
#include "test_pattern.h"
 
85
#include "settings_mode.h"
 
86
#include "text.h"
 
87
#include "text_renderer.h"
 
88
#include "common.h"
84
89
 
85
90
//_____________________________________________________________________________
86
91
//                                                                         data
87
92
 
88
 
 
89
93
// when non-zero, the time (in microseconds) of a new fan pulse that
90
94
// has just occurred, which means that segment drawing needs to be
91
95
// restarted
92
 
static unsigned long new_pulse_at = 0;
 
96
static unsigned long _new_pulse_at = 0;
93
97
 
94
98
// the time (in microseconds) when the last fan pulse occurred
95
 
static unsigned long last_pulse_at = 0;
 
99
static unsigned long _last_pulse_at = 0;
96
100
 
97
101
// duration (in microseconds) that a segment should be displayed
98
 
static unsigned long segment_step = 0;
 
102
static unsigned long _segment_step = 0;
99
103
 
100
104
// remainder after divisor and a tally of the remainders for each segment
101
 
static unsigned long segment_step_sub_step = 0;
102
 
static unsigned long segment_step_sub = 0;
103
 
 
104
 
// flag to indicate that the drawing mode should be cycled to the next one
105
 
static bool inc_draw_mode = false;
106
 
 
107
 
// a bounce-managed button
108
 
static Button button( 3 );
 
105
static unsigned long _segment_step_sub_step = 0;
 
106
static unsigned long _segment_step_sub = 0;
 
107
 
 
108
// the button
 
109
static Button _button( 3 );
 
110
 
 
111
// modes
 
112
static int _major_mode = 0;
 
113
static int _minor_mode = 0;
 
114
 
 
115
#define MAIN_MODE_IDX 1
 
116
#define SETTINGS_MODE_IDX 0
 
117
 
 
118
#define ANALOGUE_CLOCK_IDX 0
 
119
#define DIGITAL_CLOCK_IDX 1
 
120
#define TEST_PATTERN_IDX 2
109
121
 
110
122
//_____________________________________________________________________________
111
123
//                                                                         code
112
124
 
113
125
 
114
 
// check for button presses
115
 
void checkButtons()
116
 
{
117
 
        // update buttons
118
 
        int event = button.update();
119
 
 
120
 
        // handle any events
121
 
        switch( event ) {
122
 
        case 1:
123
 
                inc_draw_mode = true;
124
 
                break;
125
 
        }
126
 
}
127
 
 
128
 
 
129
 
// turn an led on/off
130
 
void ledOn( int num, bool on )
131
 
{
132
 
        if( num < 0 || num > 9 ) return;
133
 
 
134
 
        // convert to pin no.
135
 
        num += 4;
136
 
 
137
 
        // pin 4 needs to be inverted (it's driving a PNP)
138
 
        if( num == 4 ) on = !on;
139
 
 
140
 
        digitalWrite( num, on? HIGH : LOW );
 
126
// activate the current minor mode
 
127
void activate_minor_mode()
 
128
{
 
129
        // reset text
 
130
        Text::reset();
 
131
        leds_off();
 
132
 
 
133
        // give the mode a chance to init
 
134
        switch( _minor_mode ) {
 
135
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
 
136
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
137
        }
 
138
}
 
139
 
 
140
 
 
141
// activate major mode
 
142
void activate_major_mode()
 
143
{
 
144
        // reset text
 
145
        Text::reset();
 
146
        leds_off();
 
147
 
 
148
        // give the mode a chance to init
 
149
        switch( _major_mode ) {
 
150
        case MAIN_MODE_IDX: activate_minor_mode(); break;
 
151
        case SETTINGS_MODE_IDX: settings_mode_activate(); break;
 
152
        }
 
153
}
 
154
 
 
155
 
 
156
// perform button events
 
157
void do_button_events()
 
158
{
 
159
        // loop through pending events
 
160
        while( int event = _button.get_event() )
 
161
        {
 
162
                switch( event )
 
163
                {
 
164
                case 1:
 
165
                        // short press
 
166
                        switch( _major_mode ) {
 
167
                        case MAIN_MODE_IDX:
 
168
                                switch( _minor_mode ) {
 
169
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
 
170
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
 
171
                                }
 
172
                                break;
 
173
                        case SETTINGS_MODE_IDX: settings_mode_press(); break;
 
174
                        }
 
175
                        break;
 
176
 
 
177
                case 2:
 
178
                        // long press
 
179
                        switch( _major_mode ) {
 
180
                        case MAIN_MODE_IDX:
 
181
                                if( ++_minor_mode >= 3 )
 
182
                                        _minor_mode = 0;
 
183
                                activate_minor_mode();
 
184
                                break;
 
185
                        case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
 
186
                        }
 
187
                        break;
 
188
 
 
189
                case 3:
 
190
                        // looooong press (change major mode)
 
191
                        if( ++_major_mode > 1 )
 
192
                                _major_mode = 0;
 
193
                        activate_major_mode();
 
194
                        break;
 
195
                }
 
196
        }
141
197
}
142
198
 
143
199
 
144
200
// draw a display segment
145
 
void drawNextSegment( bool reset )
 
201
void draw_next_segment( bool reset )
146
202
{
147
 
        static ModeSwitcher mode_switcher;
148
 
        static bool init = false;
149
 
 
150
 
        if( !init ) {
151
 
                init = true;
152
 
                mode_switcher.activate();
153
 
        }
154
 
 
155
203
        // keep track of segment
156
204
#if CLOCK_FORWARD
157
205
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
161
209
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
162
210
#endif
163
211
 
 
212
        // reset the text renderer
 
213
        TextRenderer::reset_buffer();
 
214
 
 
215
        // frame reset
 
216
        if( reset ) {
 
217
                switch( _major_mode ) {
 
218
                case MAIN_MODE_IDX:
 
219
                        switch( _minor_mode ) {
 
220
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
 
221
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
 
222
                        }
 
223
                        break;
 
224
                case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
 
225
                }
 
226
 
 
227
                // tell the text services we're starting a new frame
 
228
                Text::draw_reset();
 
229
        }
 
230
 
164
231
        // draw
165
 
        Drawer &drawer = mode_switcher.get_drawer();
166
 
        if( reset ) drawer.draw_reset();
167
 
        drawer.draw( segment );
 
232
        switch( _major_mode ) {
 
233
        case MAIN_MODE_IDX:
 
234
                switch( _minor_mode ) {
 
235
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
 
236
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
 
237
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
 
238
                }
 
239
                break;
 
240
        case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
 
241
        }
 
242
 
 
243
        // draw any text that was rendered
 
244
        TextRenderer::output_buffer();
168
245
 
169
246
#if CLOCK_FORWARD
170
247
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
175
252
 
176
253
 
177
254
// calculate time constants when a new pulse has occurred
178
 
void calculateSegmentTimes()
 
255
void calculate_segment_times()
179
256
{
180
257
        // check for overflows, and only recalculate times if there isn't
181
258
        // one (if there is, we'll just go with the last pulse's times)
182
 
        if( new_pulse_at > last_pulse_at )
 
259
        if( _new_pulse_at > _last_pulse_at )
183
260
        {
184
261
                // new segment stepping times
185
 
                unsigned long delta = new_pulse_at - last_pulse_at;
186
 
                segment_step = delta / NUM_SEGMENTS;
187
 
                segment_step_sub = 0;
188
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
262
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
263
                _segment_step = delta / NUM_SEGMENTS;
 
264
                _segment_step_sub = 0;
 
265
                _segment_step_sub_step = delta % NUM_SEGMENTS;
189
266
        }
190
267
 
191
268
        // now we have dealt with this pulse, save the pulse time and
192
269
        // clear new_pulse_at, ready for the next pulse
193
 
        last_pulse_at = new_pulse_at;
194
 
        new_pulse_at = 0;
 
270
        _last_pulse_at = _new_pulse_at;
 
271
        _new_pulse_at = 0;
195
272
}
196
273
 
197
274
 
198
275
// wait until it is time to draw the next segment or a new pulse has
199
276
// occurred
200
 
void waitTillNextSegment( bool reset )
 
277
void wait_till_end_of_segment( bool reset )
201
278
{
202
279
        static unsigned long end_time = 0;
203
280
 
204
281
        // handle reset
205
282
        if( reset )
206
 
                end_time = last_pulse_at;
 
283
                end_time = _last_pulse_at;
207
284
 
208
285
        // work out the time that this segment should be displayed until
209
 
        end_time += segment_step;
210
 
        segment_step_sub += segment_step_sub_step;
211
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
212
 
                segment_step_sub -= NUM_SEGMENTS;
 
286
        end_time += _segment_step;
 
287
        _segment_step_sub += _segment_step_sub_step;
 
288
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
289
                _segment_step_sub -= NUM_SEGMENTS;
213
290
                end_time++;
214
291
        }
215
292
 
216
293
        // wait
217
 
        while( micros() < end_time && !new_pulse_at );
 
294
        while( micros() < end_time && !_new_pulse_at );
218
295
}
219
296
 
220
297
 
221
298
// ISR to handle the pulses from the fan's tachiometer
222
 
void fanPulseHandler()
 
299
void fan_pulse_handler()
223
300
{
224
301
        // the fan actually sends two pulses per revolution. These pulses
225
302
        // may not be exactly evenly distributed around the rotation, so
230
307
        if( !ignore )
231
308
        {
232
309
                // set a new pulse time
233
 
                new_pulse_at = micros();
 
310
                _new_pulse_at = micros();
234
311
        }
235
312
}
236
313
 
239
316
void setup()
240
317
{
241
318
        // set up an interrupt handler on pin 2 to nitice fan pulses
242
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
319
        attachInterrupt( 0, fan_pulse_handler, RISING );
243
320
        digitalWrite( 2, HIGH );
244
321
  
245
322
        // set up output pins (4 to 13) for the led array
249
326
        // set up mode-switch button on pin 3
250
327
        pinMode( 3, INPUT );
251
328
        digitalWrite( 3, HIGH );
252
 
        button.add_event_at( 5, 1 );
253
 
        button.add_event_at( 1000, 2 );
254
 
        button.add_event_at( 4000, 3 );
255
 
 
256
 
        // serial comms
257
 
        Serial.begin( 9600 );
 
329
        static int event_times[] = { 5, 500, 4000, 0 };
 
330
        _button.set_event_times( event_times );
 
331
 
 
332
        // initialise RTC
 
333
        Time::init();
 
334
 
 
335
        // activate the minor mode
 
336
        activate_major_mode();
258
337
}
259
338
 
260
339
 
262
341
void loop()
263
342
{
264
343
        // if there has been a new pulse, we'll be resetting the display
265
 
        bool reset = new_pulse_at? true : false;
 
344
        bool reset = _new_pulse_at? true : false;
 
345
 
 
346
        // update button
 
347
        _button.update();
266
348
 
267
349
        // only do this stuff at the start of a display cycle, to ensure
268
350
        // that no state changes mid-display
269
351
        if( reset )
270
352
        {
271
 
                // check buttons
272
 
                checkButtons();
 
353
                // calculate segment times
 
354
                calculate_segment_times();
273
355
 
274
356
                // keep track of time
275
 
                Time &time = Time::get_instance();
276
 
                time.update();
 
357
                Time::update();
 
358
 
 
359
                // perform button events
 
360
                do_button_events();
277
361
        }
278
362
 
279
363
        // draw this segment
280
 
        drawNextSegment( reset );
281
 
 
282
 
        // do we need to recalculate segment times?
283
 
        if( reset )
284
 
                calculateSegmentTimes();
 
364
        draw_next_segment( reset );
285
365
 
286
366
        // wait till it's time to draw the next segment
287
 
        waitTillNextSegment( reset );
 
367
        wait_till_end_of_segment( reset );
288
368
}