29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
40
LEDs that turn on and off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
56
position. You will need to experiment to discover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
80
79
#include "button.h"
82
#include "switcher_major_mode.h"
84
81
#include "Arduino.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
85
#include "settings_mode.h"
87
#include "text_renderer.h"
86
90
//_____________________________________________________________________________
90
93
// when non-zero, the time (in microseconds) of a new fan pulse that
91
94
// has just occurred, which means that segment drawing needs to be
93
static unsigned long new_pulse_at = 0;
96
static unsigned long _new_pulse_at = 0;
95
98
// the time (in microseconds) when the last fan pulse occurred
96
static unsigned long last_pulse_at = 0;
99
static unsigned long _last_pulse_at = 0;
98
101
// duration (in microseconds) that a segment should be displayed
99
static unsigned long segment_step = 0;
102
static unsigned long _segment_step = 0;
101
104
// remainder after divisor and a tally of the remainders for each segment
102
static unsigned long segment_step_sub_step = 0;
103
static unsigned long segment_step_sub = 0;
105
static unsigned long _segment_step_sub_step = 0;
106
static unsigned long _segment_step_sub = 0;
106
static Button button( 3 );
109
static int major_mode = 0;
111
#define MAX_MAJOR_MODES 5
114
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
109
static Button _button( 3 );
112
static int _major_mode = 0;
113
static int _minor_mode = 0;
115
#define MAIN_MODE_IDX 1
116
#define SETTINGS_MODE_IDX 0
118
#define ANALOGUE_CLOCK_IDX 0
119
#define DIGITAL_CLOCK_IDX 1
120
#define TEST_PATTERN_IDX 2
116
122
//_____________________________________________________________________________
126
// activate the current minor mode
127
void activate_minor_mode()
133
// give the mode a chance to init
134
switch( _minor_mode ) {
135
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
136
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
141
// activate major mode
142
void activate_major_mode()
148
// give the mode a chance to init
149
switch( _major_mode ) {
150
case MAIN_MODE_IDX: activate_minor_mode(); break;
151
case SETTINGS_MODE_IDX: settings_mode_activate(); break;
120
156
// perform button events
121
void doButtonEvents()
157
void do_button_events()
123
159
// loop through pending events
124
while( int event = button.get_event() )
160
while( int event = _button.get_event() )
130
major_modes[ major_mode ]->press();
166
switch( _major_mode ) {
168
switch( _minor_mode ) {
169
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
170
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
173
case SETTINGS_MODE_IDX: settings_mode_press(); break;
135
major_modes[ major_mode ]->long_press();
179
switch( _major_mode ) {
181
if( ++_minor_mode >= 3 )
183
activate_minor_mode();
185
case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
139
190
// looooong press (change major mode)
141
if( ++major_mode >= MAX_MAJOR_MODES )
143
} while( major_modes[ major_mode ] == NULL );
144
major_modes[ major_mode ]->activate();
191
if( ++_major_mode > 1 )
193
activate_major_mode();
152
200
// draw a display segment
153
void drawNextSegment( bool reset )
201
void draw_next_segment( bool reset )
155
203
// keep track of segment
156
204
#if CLOCK_FORWARD
161
209
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
212
// reset the text renderer
213
TextRenderer::reset_buffer();
217
switch( _major_mode ) {
219
switch( _minor_mode ) {
220
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
221
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
224
case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
227
// tell the text services we're starting a new frame
165
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
166
if( reset ) drawer.draw_reset();
167
drawer.draw( segment );
232
switch( _major_mode ) {
234
switch( _minor_mode ) {
235
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
236
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
237
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
240
case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
243
// draw any text that was rendered
244
TextRenderer::output_buffer();
169
246
#if CLOCK_FORWARD
170
247
if( ++segment >= NUM_SEGMENTS ) segment = 0;
177
254
// calculate time constants when a new pulse has occurred
178
void calculateSegmentTimes()
255
void calculate_segment_times()
180
257
// check for overflows, and only recalculate times if there isn't
181
258
// one (if there is, we'll just go with the last pulse's times)
182
if( new_pulse_at > last_pulse_at )
259
if( _new_pulse_at > _last_pulse_at )
184
261
// new segment stepping times
185
unsigned long delta = new_pulse_at - last_pulse_at;
186
segment_step = delta / NUM_SEGMENTS;
187
segment_step_sub = 0;
188
segment_step_sub_step = delta % NUM_SEGMENTS;
262
unsigned long delta = _new_pulse_at - _last_pulse_at;
263
_segment_step = delta / NUM_SEGMENTS;
264
_segment_step_sub = 0;
265
_segment_step_sub_step = delta % NUM_SEGMENTS;
191
268
// now we have dealt with this pulse, save the pulse time and
192
269
// clear new_pulse_at, ready for the next pulse
193
last_pulse_at = new_pulse_at;
270
_last_pulse_at = _new_pulse_at;
198
275
// wait until it is time to draw the next segment or a new pulse has
200
void waitTillEndOfSegment( bool reset )
277
void wait_till_end_of_segment( bool reset )
202
279
static unsigned long end_time = 0;
206
end_time = last_pulse_at;
283
end_time = _last_pulse_at;
208
285
// work out the time that this segment should be displayed until
209
end_time += segment_step;
210
segment_step_sub += segment_step_sub_step;
211
if( segment_step_sub >= NUM_SEGMENTS ) {
212
segment_step_sub -= NUM_SEGMENTS;
286
end_time += _segment_step;
287
_segment_step_sub += _segment_step_sub_step;
288
if( _segment_step_sub >= NUM_SEGMENTS ) {
289
_segment_step_sub -= NUM_SEGMENTS;
217
while( micros() < end_time && !new_pulse_at );
294
while( micros() < end_time && !_new_pulse_at );
221
298
// ISR to handle the pulses from the fan's tachiometer
222
void fanPulseHandler()
299
void fan_pulse_handler()
224
301
// the fan actually sends two pulses per revolution. These pulses
225
302
// may not be exactly evenly distributed around the rotation, so
266
343
// if there has been a new pulse, we'll be resetting the display
267
bool reset = new_pulse_at? true : false;
344
bool reset = _new_pulse_at? true : false;
272
349
// only do this stuff at the start of a display cycle, to ensure
273
350
// that no state changes mid-display
276
353
// calculate segment times
277
calculateSegmentTimes();
354
calculate_segment_times();
279
356
// keep track of time
280
Time &time = Time::get_instance();
283
359
// perform button events
287
363
// draw this segment
288
drawNextSegment( reset );
364
draw_next_segment( reset );
290
366
// wait till it's time to draw the next segment
291
waitTillEndOfSegment( reset );
367
wait_till_end_of_segment( reset );