/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-04-29 15:26:03 UTC
  • Revision ID: tim@ed.am-20120429152603-yoj8oi7wlzb0qwnx
added a 5V power regulator to schematic (since the one on our arduino was crap)

Show diffs side-by-side

added added

removed removed

Lines of Context:
 
1
/* -*- mode: c++; compile-command: "BOARD=pro5v make"; -*- */
1
2
/*
2
3
 * propeller-clock.ino
3
4
 *
27
28
 
28
29
 * a PC fan is wired up to a 12V power supply
29
30
 
30
 
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
 
   arduino.
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
32
33
 
33
 
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
34
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
35
36
   13 is at the outside.
36
37
 
37
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
38
39
   used to indirectly drive a transistor which in turn drives several
39
 
   LEDs that turn on anf off in unison in the centre of the clock.
 
40
   LEDs that turn on and off in unison in the centre of the clock.
40
41
 
41
42
 * a button should be attached to pin 3 that grounds it when pressed.
42
43
 
43
 
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
44
45
 
45
46
Implementation details:
46
47
 
49
50
 * the timing of the drawing of the clock face is recalculated with
50
51
   every rotation of the propeller.
51
52
    
52
 
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
53
54
   software skips every other one. This means that the clock may
54
55
   appear upside-down if started with the propeller in the wrong
55
 
   position. You will need to experiment to dicsover the position that
 
56
   position. You will need to experiment to discover the position that
56
57
   the propeller must be in when starting the clock.
57
58
    
58
59
Usage instructions:
74
75
 
75
76
******************************************************************************/
76
77
 
77
 
 
78
 
#include <Bounce.h>
79
 
#include <DS1307.h>
80
 
#include <Wire.h>
 
78
#include "config.h"
 
79
#include "button.h"
 
80
#include "time.h"
 
81
#include "Arduino.h"
 
82
#include "analogue_clock.h"
 
83
#include "digital_clock.h"
 
84
#include "test_pattern.h"
 
85
#include "settings_mode.h"
 
86
#include "text.h"
 
87
#include "text_renderer.h"
 
88
#include "common.h"
81
89
 
82
90
//_____________________________________________________________________________
83
91
//                                                                         data
84
92
 
85
 
 
86
93
// when non-zero, the time (in microseconds) of a new fan pulse that
87
94
// has just occurred, which means that segment drawing needs to be
88
95
// restarted
89
 
static unsigned long new_pulse_at = 0;
 
96
static unsigned long _new_pulse_at = 0;
90
97
 
91
98
// the time (in microseconds) when the last fan pulse occurred
92
 
static unsigned long last_pulse_at = 0;
 
99
static unsigned long _last_pulse_at = 0;
93
100
 
94
101
// duration (in microseconds) that a segment should be displayed
95
 
static unsigned long segment_step = 0;
 
102
static unsigned long _segment_step = 0;
96
103
 
97
104
// remainder after divisor and a tally of the remainders for each segment
98
 
static unsigned long segment_step_sub_step = 0;
99
 
static unsigned long segment_step_sub = 0;
100
 
 
101
 
// flag to indicate that the drawing mode should be cycled to the next one
102
 
static bool inc_draw_mode = false;
103
 
 
104
 
// a bounce-managed button
105
 
static Bounce button( 3, 5 );
106
 
 
107
 
// the time
108
 
static int time_hours = 0;
109
 
static int time_minutes = 0;
110
 
static int time_seconds = 0;
111
 
 
112
 
// number of segments in a full display (rotation) is 60 (one per
113
 
// second) times the desired number of sub-divisions of a second
114
 
#define NUM_SECOND_SEGMENTS 5
115
 
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
105
static unsigned long _segment_step_sub_step = 0;
 
106
static unsigned long _segment_step_sub = 0;
 
107
 
 
108
// the button
 
109
static Button _button( 3 );
 
110
 
 
111
// modes
 
112
static int _major_mode = 0;
 
113
static int _minor_mode = 0;
 
114
 
 
115
#define MAIN_MODE_IDX 1
 
116
#define SETTINGS_MODE_IDX 0
 
117
 
 
118
#define ANALOGUE_CLOCK_IDX 0
 
119
#define DIGITAL_CLOCK_IDX 1
 
120
#define TEST_PATTERN_IDX 2
116
121
 
117
122
//_____________________________________________________________________________
118
123
//                                                                         code
119
124
 
120
125
 
121
 
// check for button presses
122
 
void checkButtons()
123
 
{
124
 
        // update buttons
125
 
        button.update();
126
 
 
127
 
        // notice button presses
128
 
        if( button.risingEdge() )
129
 
                inc_draw_mode = true;
130
 
}
131
 
 
132
 
 
133
 
// keep track of time
134
 
void trackTime()
135
 
{
136
 
        // previous time and any carried-over milliseconds
137
 
        static unsigned long last_time = millis();
138
 
        static unsigned long carry = 0;
139
 
 
140
 
        // how many milliseonds have elapsed since we last checked?
141
 
        unsigned long next_time = millis();
142
 
        unsigned long delta = next_time - last_time + carry;
143
 
 
144
 
        // update the previous time and carried-over milliseconds
145
 
        last_time = next_time;
146
 
        carry = delta % 1000;
147
 
 
148
 
        // add the seconds that have passed to the time
149
 
        time_seconds += delta / 1000;
150
 
        while( time_seconds >= 60 ) {
151
 
                time_seconds -= 60;
152
 
                time_minutes++;
153
 
                if( time_minutes >= 60 ) {
154
 
                        time_minutes -= 60;
155
 
                        time_hours++;
156
 
                        if( time_hours >= 24 )
157
 
                                time_hours -= 24;
 
126
// activate the current minor mode
 
127
void activate_minor_mode()
 
128
{
 
129
        // reset text
 
130
        Text::reset();
 
131
        leds_off();
 
132
 
 
133
        // give the mode a chance to init
 
134
        switch( _minor_mode ) {
 
135
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
 
136
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
137
        }
 
138
}
 
139
 
 
140
 
 
141
// activate major mode
 
142
void activate_major_mode()
 
143
{
 
144
        // reset text
 
145
        Text::reset();
 
146
        leds_off();
 
147
 
 
148
        // reset buttons
 
149
        _button.set_press_mode( _major_mode != SETTINGS_MODE_IDX );
 
150
 
 
151
        // give the mode a chance to init
 
152
        switch( _major_mode ) {
 
153
        case MAIN_MODE_IDX: activate_minor_mode(); break;
 
154
        case SETTINGS_MODE_IDX: settings_mode_activate(); break;
 
155
        }
 
156
}
 
157
 
 
158
 
 
159
// perform button events
 
160
void do_button_events()
 
161
{
 
162
        // loop through pending events
 
163
        while( int event = _button.get_event() )
 
164
        {
 
165
                switch( event )
 
166
                {
 
167
                case 1:
 
168
                        // short press
 
169
                        switch( _major_mode ) {
 
170
                        case MAIN_MODE_IDX:
 
171
                                switch( _minor_mode ) {
 
172
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
 
173
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
 
174
                                }
 
175
                                break;
 
176
                        case SETTINGS_MODE_IDX: settings_mode_press(); break;
 
177
                        }
 
178
                        break;
 
179
 
 
180
                case 2:
 
181
                        // long press
 
182
                        switch( _major_mode ) {
 
183
                        case MAIN_MODE_IDX:
 
184
                                if( ++_minor_mode >= 3 )
 
185
                                        _minor_mode = 0;
 
186
                                activate_minor_mode();
 
187
                                break;
 
188
                        case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
 
189
                        }
 
190
                        break;
 
191
 
 
192
                case 3:
 
193
                        // looooong press (change major mode)
 
194
                        if( ++_major_mode > 1 )
 
195
                                _major_mode = 0;
 
196
                        activate_major_mode();
 
197
                        break;
158
198
                }
159
199
        }
160
200
}
161
201
 
162
202
 
163
 
// draw a segment for the test display
164
 
void drawNextSegment_test( bool reset )
 
203
// draw a display segment
 
204
void draw_next_segment( bool reset )
165
205
{
166
206
        // keep track of segment
167
 
        static unsigned int segment = 0;
168
 
        if( reset ) segment = 0;
169
 
        segment++;
170
 
 
171
 
        // turn on inside and outside LEDs
172
 
        digitalWrite( 4, HIGH );
173
 
        digitalWrite( 13, HIGH );
174
 
 
175
 
        // display segment number in binary across in the inside LEDs,
176
 
        // with the LED on pin 12 showing the least-significant bit
177
 
        for( int a = 0; a < 8; a++ )
178
 
                digitalWrite( 12 - a, ( ( segment >> a ) & 1 )? HIGH : LOW );
179
 
}
180
 
 
181
 
 
182
 
// draw a segment for the time display
183
 
void drawNextSegment_time( bool reset )
184
 
{
185
 
        static unsigned int second = 0;
186
 
        static unsigned int segment = 0;
187
 
 
188
 
        // handle display reset
 
207
#if CLOCK_FORWARD
 
208
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
209
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
210
#else
 
211
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
212
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
213
#endif
 
214
 
 
215
        // reset the text renderer
 
216
        TextRenderer::reset_buffer();
 
217
 
 
218
        // frame reset
189
219
        if( reset ) {
190
 
                second = 0;
191
 
                segment = 0;
192
 
        }
193
 
 
194
 
        // what needs to be drawn?
195
 
        bool draw_tick = !segment && second % 5 == 0;
196
 
        bool draw_second = !segment && second == time_seconds;
197
 
        bool draw_minute = !segment && second == time_minutes;
198
 
        bool draw_hour = !segment && second == time_hours;
199
 
 
200
 
        // set the LEDs
201
 
        digitalWrite( 13, HIGH );
202
 
        digitalWrite( 12, draw_tick || draw_minute );
203
 
        for( int a = 10; a <= 11; a++ )
204
 
                digitalWrite( a, draw_minute || draw_second );
205
 
        for( int a = 4; a <= 9; a++ )
206
 
                digitalWrite( 10, draw_minute | draw_second || draw_hour );
207
 
 
208
 
        // inc position
209
 
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
210
 
                segment = 0;
211
 
                second++;
212
 
        }
213
 
}
214
 
 
215
 
 
216
 
// draw a display segment
217
 
void drawNextSegment( bool reset )
218
 
{
219
 
        static int draw_mode = 0;
220
 
 
221
 
        // handle mode switch requests
222
 
        if( reset && inc_draw_mode ) {
223
 
                inc_draw_mode = false;
224
 
                draw_mode++;
225
 
                if( draw_mode >= 2 )
226
 
                        draw_mode = 0;
227
 
        }
228
 
 
229
 
        // draw the segment
230
 
        switch( draw_mode ) {
231
 
        case 0: drawNextSegment_test( reset ); break;
232
 
        case 1: drawNextSegment_time( reset ); break;
233
 
        }
 
220
                switch( _major_mode ) {
 
221
                case MAIN_MODE_IDX:
 
222
                        switch( _minor_mode ) {
 
223
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
 
224
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
 
225
                        }
 
226
                        break;
 
227
                case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
 
228
                }
 
229
 
 
230
                // tell the text services we're starting a new frame
 
231
                Text::draw_reset();
 
232
        }
 
233
 
 
234
        // draw
 
235
        switch( _major_mode ) {
 
236
        case MAIN_MODE_IDX:
 
237
                switch( _minor_mode ) {
 
238
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
 
239
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
 
240
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
 
241
                }
 
242
                break;
 
243
        case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
 
244
        }
 
245
 
 
246
        // draw any text that was rendered
 
247
        TextRenderer::output_buffer();
 
248
 
 
249
#if CLOCK_FORWARD
 
250
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
251
#else
 
252
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
253
#endif
234
254
}
235
255
 
236
256
 
237
257
// calculate time constants when a new pulse has occurred
238
 
void calculateSegmentTimes()
 
258
void calculate_segment_times()
239
259
{
240
260
        // check for overflows, and only recalculate times if there isn't
241
261
        // one (if there is, we'll just go with the last pulse's times)
242
 
        if( new_pulse_at > last_pulse_at )
 
262
        if( _new_pulse_at > _last_pulse_at )
243
263
        {
244
264
                // new segment stepping times
245
 
                unsigned long delta = new_pulse_at - last_pulse_at;
246
 
                segment_step = delta / NUM_SEGMENTS;
247
 
                segment_step_sub = 0;
248
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
265
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
266
                _segment_step = delta / NUM_SEGMENTS;
 
267
                _segment_step_sub = 0;
 
268
                _segment_step_sub_step = delta % NUM_SEGMENTS;
249
269
        }
250
270
 
251
271
        // now we have dealt with this pulse, save the pulse time and
252
272
        // clear new_pulse_at, ready for the next pulse
253
 
        last_pulse_at = new_pulse_at;
254
 
        new_pulse_at = 0;
 
273
        _last_pulse_at = _new_pulse_at;
 
274
        _new_pulse_at = 0;
255
275
}
256
276
 
257
277
 
258
278
// wait until it is time to draw the next segment or a new pulse has
259
279
// occurred
260
 
void waitTillNextSegment( bool reset )
 
280
void wait_till_end_of_segment( bool reset )
261
281
{
262
282
        static unsigned long end_time = 0;
263
283
 
264
284
        // handle reset
265
285
        if( reset )
266
 
                end_time = last_pulse_at;
 
286
                end_time = _last_pulse_at;
267
287
 
268
288
        // work out the time that this segment should be displayed until
269
 
        end_time += segment_step;
270
 
        segment_step_sub += segment_step_sub_step;
271
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
272
 
                segment_step_sub -= NUM_SEGMENTS;
 
289
        end_time += _segment_step;
 
290
        _segment_step_sub += _segment_step_sub_step;
 
291
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
292
                _segment_step_sub -= NUM_SEGMENTS;
273
293
                end_time++;
274
294
        }
275
295
 
276
296
        // wait
277
 
        while( micros() < end_time && !new_pulse_at );
 
297
        while( micros() < end_time && !_new_pulse_at );
278
298
}
279
299
 
280
300
 
281
301
// ISR to handle the pulses from the fan's tachiometer
282
 
void fanPulseHandler()
 
302
void fan_pulse_handler()
283
303
{
284
304
        // the fan actually sends two pulses per revolution. These pulses
285
305
        // may not be exactly evenly distributed around the rotation, so
290
310
        if( !ignore )
291
311
        {
292
312
                // set a new pulse time
293
 
                new_pulse_at = micros();
 
313
                _new_pulse_at = micros();
294
314
        }
295
315
}
296
316
 
299
319
void setup()
300
320
{
301
321
        // set up an interrupt handler on pin 2 to nitice fan pulses
302
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
322
        attachInterrupt( 0, fan_pulse_handler, RISING );
303
323
        digitalWrite( 2, HIGH );
304
324
  
305
325
        // set up output pins (4 to 13) for the led array
308
328
 
309
329
        // set up mode-switch button on pin 3
310
330
        pinMode( 3, INPUT );
311
 
 
312
 
        // get the time from the real-time clock
313
 
        int rtc_data[ 7 ];
314
 
        RTC.get( rtc_data, true );
315
 
        time_hours = rtc_data[ DS1307_HR ];
316
 
        time_minutes = rtc_data[ DS1307_MIN ];
317
 
        time_seconds = rtc_data[ DS1307_SEC ];
318
 
 
319
 
        // serial comms
320
 
        Serial.begin( 9600 );
 
331
        digitalWrite( 3, HIGH );
 
332
        static int event_times[] = { 5, 500, 4000, 0 };
 
333
        _button.set_event_times( event_times );
 
334
 
 
335
        // initialise RTC
 
336
        Time::init();
 
337
 
 
338
        // init text renderer
 
339
        TextRenderer::init();
 
340
 
 
341
        // activate the minor mode
 
342
        activate_major_mode();
321
343
}
322
344
 
323
345
 
325
347
void loop()
326
348
{
327
349
        // if there has been a new pulse, we'll be resetting the display
328
 
        bool reset = new_pulse_at? true : false;
 
350
        bool reset = _new_pulse_at? true : false;
 
351
 
 
352
        // update button
 
353
        _button.update();
329
354
 
330
355
        // only do this stuff at the start of a display cycle, to ensure
331
356
        // that no state changes mid-display
332
357
        if( reset )
333
358
        {
334
 
                // check buttons
335
 
                checkButtons();
 
359
                // calculate segment times
 
360
                calculate_segment_times();
336
361
 
337
362
                // keep track of time
338
 
                trackTime();
 
363
                Time::update();
 
364
 
 
365
                // perform button events
 
366
                do_button_events();
339
367
        }
340
368
 
341
369
        // draw this segment
342
 
        drawNextSegment( reset );
343
 
 
344
 
        // do we need to recalculate segment times?
345
 
        if( reset )
346
 
                calculateSegmentTimes();
 
370
        draw_next_segment( reset );
347
371
 
348
372
        // wait till it's time to draw the next segment
349
 
        waitTillNextSegment( reset );
 
373
        wait_till_end_of_segment( reset );
350
374
}