29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
40
LEDs that turn on and off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
56
position. You will need to experiment to discover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
78
#include "config.h"
80
79
#include "button.h"
82
#include "switcher_major_mode.h"
84
81
#include "Arduino.h"
82
#include "analogue_clock.h"
83
#include "digital_clock.h"
84
#include "test_pattern.h"
85
#include "settings_mode.h"
87
#include "text_renderer.h"
86
90
//_____________________________________________________________________________
90
93
// when non-zero, the time (in microseconds) of a new fan pulse that
91
94
// has just occurred, which means that segment drawing needs to be
93
static unsigned long new_pulse_at = 0;
96
static unsigned long _new_pulse_at = 0;
95
98
// the time (in microseconds) when the last fan pulse occurred
96
static unsigned long last_pulse_at = 0;
99
static unsigned long _last_pulse_at = 0;
98
101
// duration (in microseconds) that a segment should be displayed
99
static unsigned long segment_step = 0;
102
static unsigned long _segment_step = 0;
101
104
// remainder after divisor and a tally of the remainders for each segment
102
static unsigned long segment_step_sub_step = 0;
103
static unsigned long segment_step_sub = 0;
105
static unsigned long _segment_step_sub_step = 0;
106
static unsigned long _segment_step_sub = 0;
106
static Button button( 3 );
109
static int major_mode = 0;
111
#define MAX_MAJOR_MODES 5
114
static MajorMode *major_modes[ MAX_MAJOR_MODES ] = { 0 };
109
static Button _button( 3 );
112
static int _major_mode = 0;
113
static int _minor_mode = 0;
115
#define MAIN_MODE_IDX 1
116
#define SETTINGS_MODE_IDX 0
118
#define ANALOGUE_CLOCK_IDX 0
119
#define DIGITAL_CLOCK_IDX 1
120
#define TEST_PATTERN_IDX 2
116
122
//_____________________________________________________________________________
126
// activate the current minor mode
127
void activate_minor_mode()
133
// give the mode a chance to init
134
switch( _minor_mode ) {
135
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
136
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
141
// activate major mode
142
void activate_major_mode()
149
_button.set_press_mode( _major_mode != SETTINGS_MODE_IDX );
151
// give the mode a chance to init
152
switch( _major_mode ) {
153
case MAIN_MODE_IDX: activate_minor_mode(); break;
154
case SETTINGS_MODE_IDX: settings_mode_activate(); break;
120
159
// perform button events
121
void doButtonEvents()
160
void do_button_events()
123
162
// loop through pending events
124
while( int event = button.get_event() )
163
while( int event = _button.get_event() )
130
major_modes[ major_mode ]->press();
169
switch( _major_mode ) {
171
switch( _minor_mode ) {
172
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
173
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
176
case SETTINGS_MODE_IDX: settings_mode_press(); break;
135
major_modes[ major_mode ]->long_press();
182
switch( _major_mode ) {
184
if( ++_minor_mode >= 3 )
186
activate_minor_mode();
188
case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
139
193
// looooong press (change major mode)
141
if( ++major_mode >= MAX_MAJOR_MODES )
143
} while( major_modes[ major_mode ] == NULL );
144
major_modes[ major_mode ]->activate();
194
if( ++_major_mode > 1 )
196
activate_major_mode();
152
203
// draw a display segment
153
void drawNextSegment( bool reset )
204
void draw_next_segment( bool reset )
155
206
// keep track of segment
156
207
#if CLOCK_FORWARD
161
212
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
215
// reset the text renderer
216
TextRenderer::reset_buffer();
220
switch( _major_mode ) {
222
switch( _minor_mode ) {
223
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
224
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
227
case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
230
// tell the text services we're starting a new frame
165
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
166
if( reset ) drawer.draw_reset();
167
drawer.draw( segment );
235
switch( _major_mode ) {
237
switch( _minor_mode ) {
238
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
239
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
240
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
243
case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
246
// draw any text that was rendered
247
TextRenderer::output_buffer();
169
249
#if CLOCK_FORWARD
170
250
if( ++segment >= NUM_SEGMENTS ) segment = 0;
177
257
// calculate time constants when a new pulse has occurred
178
void calculateSegmentTimes()
258
void calculate_segment_times()
180
260
// check for overflows, and only recalculate times if there isn't
181
261
// one (if there is, we'll just go with the last pulse's times)
182
if( new_pulse_at > last_pulse_at )
262
if( _new_pulse_at > _last_pulse_at )
184
264
// new segment stepping times
185
unsigned long delta = new_pulse_at - last_pulse_at;
186
segment_step = delta / NUM_SEGMENTS;
187
segment_step_sub = 0;
188
segment_step_sub_step = delta % NUM_SEGMENTS;
265
unsigned long delta = _new_pulse_at - _last_pulse_at;
266
_segment_step = delta / NUM_SEGMENTS;
267
_segment_step_sub = 0;
268
_segment_step_sub_step = delta % NUM_SEGMENTS;
191
271
// now we have dealt with this pulse, save the pulse time and
192
272
// clear new_pulse_at, ready for the next pulse
193
last_pulse_at = new_pulse_at;
273
_last_pulse_at = _new_pulse_at;
198
278
// wait until it is time to draw the next segment or a new pulse has
200
void waitTillEndOfSegment( bool reset )
280
void wait_till_end_of_segment( bool reset )
202
282
static unsigned long end_time = 0;
206
end_time = last_pulse_at;
286
end_time = _last_pulse_at;
208
288
// work out the time that this segment should be displayed until
209
end_time += segment_step;
210
segment_step_sub += segment_step_sub_step;
211
if( segment_step_sub >= NUM_SEGMENTS ) {
212
segment_step_sub -= NUM_SEGMENTS;
289
end_time += _segment_step;
290
_segment_step_sub += _segment_step_sub_step;
291
if( _segment_step_sub >= NUM_SEGMENTS ) {
292
_segment_step_sub -= NUM_SEGMENTS;
217
while( micros() < end_time && !new_pulse_at );
297
while( micros() < end_time && !_new_pulse_at );
221
301
// ISR to handle the pulses from the fan's tachiometer
222
void fanPulseHandler()
302
void fan_pulse_handler()
224
304
// the fan actually sends two pulses per revolution. These pulses
225
305
// may not be exactly evenly distributed around the rotation, so
266
349
// if there has been a new pulse, we'll be resetting the display
267
bool reset = new_pulse_at? true : false;
350
bool reset = _new_pulse_at? true : false;
272
355
// only do this stuff at the start of a display cycle, to ensure
273
356
// that no state changes mid-display
276
359
// calculate segment times
277
calculateSegmentTimes();
360
calculate_segment_times();
279
362
// keep track of time
280
Time &time = Time::get_instance();
283
365
// perform button events
287
369
// draw this segment
288
drawNextSegment( reset );
370
draw_next_segment( reset );
290
372
// wait till it's time to draw the next segment
291
waitTillEndOfSegment( reset );
373
wait_till_end_of_segment( reset );