/elec/propeller-clock

To get this branch, use:
bzr branch http://bzr.ed.am/elec/propeller-clock

« back to all changes in this revision

Viewing changes to src/propeller-clock.cc

  • Committer: Tim Marston
  • Date: 2012-05-09 20:36:07 UTC
  • Revision ID: tim@ed.am-20120509203607-5sh14qikxjmm6p3y
updated arduino.mk

Show diffs side-by-side

added added

removed removed

Lines of Context:
28
28
 
29
29
 * a PC fan is wired up to a 12V power supply
30
30
 
31
 
 * the fan's SENSE (tachiometer) pin connected to pin 2 on the
32
 
   arduino.
 
31
 * the fan's SENSE (tachometer) pin connected to pin 2 on the
 
32
   Arduino.
33
33
 
34
 
 * the pins 4 to 13 on the arduino should directly drive an LED (the
 
34
 * the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
   LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
   13 is at the outside.
37
37
 
38
38
 * if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
   used to indirectly drive a transistor which in turn drives several
40
 
   LEDs that turn on anf off in unison in the centre of the clock.
 
40
   LEDs that turn on and off in unison in the centre of the clock.
41
41
 
42
42
 * a button should be attached to pin 3 that grounds it when pressed.
43
43
 
44
 
 * A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
 
44
 * A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
45
45
 
46
46
Implementation details:
47
47
 
50
50
 * the timing of the drawing of the clock face is recalculated with
51
51
   every rotation of the propeller.
52
52
    
53
 
 * a PC fan actually sends 2 tachiometer pulses per revolution, so the
 
53
 * a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
   software skips every other one. This means that the clock may
55
55
   appear upside-down if started with the propeller in the wrong
56
 
   position. You will need to experiment to dicsover the position that
 
56
   position. You will need to experiment to discover the position that
57
57
   the propeller must be in when starting the clock.
58
58
    
59
59
Usage instructions:
75
75
 
76
76
******************************************************************************/
77
77
 
78
 
 
79
 
#include <Bounce.h>
80
 
#include <DS1307.h>
81
 
#include <Wire.h>
 
78
#include "config.h"
 
79
#include "button.h"
 
80
#include "time.h"
 
81
#include "Arduino.h"
 
82
#include "analogue_clock.h"
 
83
#include "digital_clock.h"
 
84
#include "test_pattern.h"
 
85
#include "settings_mode.h"
 
86
#include "text.h"
 
87
#include "text_renderer.h"
 
88
#include "common.h"
82
89
 
83
90
//_____________________________________________________________________________
84
91
//                                                                         data
85
92
 
86
 
 
87
93
// when non-zero, the time (in microseconds) of a new fan pulse that
88
94
// has just occurred, which means that segment drawing needs to be
89
95
// restarted
90
 
static unsigned long new_pulse_at = 0;
 
96
static unsigned long _new_pulse_at = 0;
91
97
 
92
98
// the time (in microseconds) when the last fan pulse occurred
93
 
static unsigned long last_pulse_at = 0;
 
99
static unsigned long _last_pulse_at = 0;
94
100
 
95
101
// duration (in microseconds) that a segment should be displayed
96
 
static unsigned long segment_step = 0;
 
102
static unsigned long _segment_step = 0;
97
103
 
98
104
// remainder after divisor and a tally of the remainders for each segment
99
 
static unsigned long segment_step_sub_step = 0;
100
 
static unsigned long segment_step_sub = 0;
101
 
 
102
 
// flag to indicate that the drawing mode should be cycled to the next one
103
 
static bool inc_draw_mode = false;
104
 
 
105
 
// a bounce-managed button
106
 
static Bounce button( 3, 50 );
107
 
 
108
 
// the time
109
 
static int time_hours = 0;
110
 
static int time_minutes = 0;
111
 
static int time_seconds = 0;
112
 
 
113
 
// number of segments in a full display (rotation) is 60 (one per
114
 
// second) times the desired number of sub-divisions of a second
115
 
#define NUM_SECOND_SEGMENTS 5
116
 
#define NUM_SEGMENTS ( 60 * NUM_SECOND_SEGMENTS )
 
105
static unsigned long _segment_step_sub_step = 0;
 
106
static unsigned long _segment_step_sub = 0;
 
107
 
 
108
// the button
 
109
static Button _button( 3 );
 
110
 
 
111
// modes
 
112
static int _major_mode = 0;
 
113
static int _minor_mode = 0;
 
114
 
 
115
#define MAIN_MODE_IDX 1
 
116
#define SETTINGS_MODE_IDX 0
 
117
 
 
118
#define ANALOGUE_CLOCK_IDX 0
 
119
#define DIGITAL_CLOCK_IDX 1
 
120
#define TEST_PATTERN_IDX 2
117
121
 
118
122
//_____________________________________________________________________________
119
123
//                                                                         code
120
124
 
121
125
 
122
 
// check for button presses
123
 
void checkButtons()
124
 
{
125
 
        // update buttons
126
 
        button.update();
127
 
 
128
 
        // notice button presses
129
 
        if( button.risingEdge() )
130
 
                inc_draw_mode = true;
131
 
}
132
 
 
133
 
 
134
 
// keep track of time
135
 
void trackTime()
136
 
{
137
 
        // previous time and any carried-over milliseconds
138
 
        static unsigned long last_time = millis();
139
 
        static unsigned long carry = 0;
140
 
 
141
 
        // how many milliseonds have elapsed since we last checked?
142
 
        unsigned long next_time = millis();
143
 
        unsigned long delta = next_time - last_time + carry;
144
 
 
145
 
        // update the previous time and carried-over milliseconds
146
 
        last_time = next_time;
147
 
        carry = delta % 1000;
148
 
 
149
 
        // add the seconds that have passed to the time
150
 
        time_seconds += delta / 1000;
151
 
        while( time_seconds >= 60 ) {
152
 
                time_seconds -= 60;
153
 
                time_minutes++;
154
 
                if( time_minutes >= 60 ) {
155
 
                        time_minutes -= 60;
156
 
                        time_hours++;
157
 
                        if( time_hours >= 24 )
158
 
                                time_hours -= 24;
 
126
// activate the current minor mode
 
127
void activate_minor_mode()
 
128
{
 
129
        // reset text
 
130
        Text::reset();
 
131
        leds_off();
 
132
 
 
133
        // give the mode a chance to init
 
134
        switch( _minor_mode ) {
 
135
        case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
 
136
        case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
 
137
        }
 
138
}
 
139
 
 
140
 
 
141
// activate major mode
 
142
void activate_major_mode()
 
143
{
 
144
        // reset text
 
145
        Text::reset();
 
146
        leds_off();
 
147
 
 
148
        // reset buttons
 
149
        _button.set_press_mode( _major_mode != SETTINGS_MODE_IDX );
 
150
 
 
151
        // give the mode a chance to init
 
152
        switch( _major_mode ) {
 
153
        case MAIN_MODE_IDX: activate_minor_mode(); break;
 
154
        case SETTINGS_MODE_IDX: settings_mode_activate(); break;
 
155
        }
 
156
}
 
157
 
 
158
 
 
159
// perform button events
 
160
void do_button_events()
 
161
{
 
162
        // loop through pending events
 
163
        while( int event = _button.get_event() )
 
164
        {
 
165
                switch( event )
 
166
                {
 
167
                case 1:
 
168
                        // short press
 
169
                        switch( _major_mode ) {
 
170
                        case MAIN_MODE_IDX:
 
171
                                switch( _minor_mode ) {
 
172
                                case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
 
173
                                case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
 
174
                                }
 
175
                                break;
 
176
                        case SETTINGS_MODE_IDX: settings_mode_press(); break;
 
177
                        }
 
178
                        break;
 
179
 
 
180
                case 2:
 
181
                        // long press
 
182
                        switch( _major_mode ) {
 
183
                        case MAIN_MODE_IDX:
 
184
                                if( ++_minor_mode >= 3 )
 
185
                                        _minor_mode = 0;
 
186
                                activate_minor_mode();
 
187
                                break;
 
188
                        case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
 
189
                        }
 
190
                        break;
 
191
 
 
192
                case 3:
 
193
                        // looooong press (change major mode)
 
194
                        if( ++_major_mode > 1 )
 
195
                                _major_mode = 0;
 
196
                        activate_major_mode();
 
197
                        break;
159
198
                }
160
199
        }
161
200
}
162
201
 
163
202
 
164
 
// turn an led on/off
165
 
void ledOn( int num, bool on )
166
 
{
167
 
        if( num < 0 || num > 9 ) return;
168
 
 
169
 
        // convert to pin no.
170
 
        num += 4;
171
 
 
172
 
        // pin 4 needs to be inverted (it's driving a PNP)
173
 
        // NOTE: PIN 4 TEMPORARILY DISABLED
174
 
        if( num == 4 ) on = true; //!on
175
 
 
176
 
        digitalWrite( num, on? HIGH : LOW );
177
 
}
178
 
 
179
 
 
180
 
// draw a segment for the test display
181
 
void drawNextSegment_test( bool reset )
 
203
// draw a display segment
 
204
void draw_next_segment( bool reset )
182
205
{
183
206
        // keep track of segment
184
 
        static unsigned int segment = 0;
185
 
        if( reset ) segment = 0;
186
 
        segment++;
187
 
 
188
 
        // turn on inside and outside LEDs
189
 
        ledOn( 0, true );
190
 
        ledOn( 9, true );
191
 
 
192
 
        // display segment number in binary across in the inside LEDs,
193
 
        // with the LED on pin 12 showing the least-significant bit
194
 
        for( int a = 0; a < 8; a++ )
195
 
                ledOn( 8 - a, ( segment >> a ) & 1 );
196
 
}
197
 
 
198
 
 
199
 
// draw a segment for the time display
200
 
void drawNextSegment_time( bool reset )
201
 
{
202
 
        static int second = 0;
203
 
        static int segment = 0;
204
 
 
205
 
        // handle display reset
 
207
#if CLOCK_FORWARD
 
208
        static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
209
        if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
 
210
#else
 
211
        static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
212
        if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
 
213
#endif
 
214
 
 
215
        // reset the text renderer
 
216
        TextRenderer::reset_buffer();
 
217
 
 
218
        // frame reset
206
219
        if( reset ) {
207
 
                second = 0;
208
 
                segment = 0;
209
 
        }
210
 
 
211
 
        // what needs to be drawn?
212
 
        bool draw_tick = !segment && second % 5 == 0;
213
 
        bool draw_second = !segment && second == time_seconds;
214
 
        bool draw_minute = !segment && second == time_minutes;
215
 
        bool draw_hour = !segment && second == time_hours;
216
 
 
217
 
        // set the LEDs
218
 
        ledOn( 9, true );
219
 
        ledOn( 8, draw_tick || draw_minute );
220
 
        for( int a = 6; a <= 7; a++ )
221
 
                ledOn( a, draw_minute || draw_second );
222
 
        for( int a = 0; a <= 5; a++ )
223
 
                ledOn( a, draw_minute || draw_second || draw_hour );
224
 
 
225
 
        // inc position
226
 
        if( ++segment >= NUM_SECOND_SEGMENTS ) {
227
 
                segment = 0;
228
 
                second++;
229
 
        }
230
 
}
231
 
 
232
 
 
233
 
// draw a display segment
234
 
void drawNextSegment( bool reset )
235
 
{
236
 
        static int draw_mode = 0;
237
 
 
238
 
        // handle mode switch requests
239
 
        if( reset && inc_draw_mode ) {
240
 
                inc_draw_mode = false;
241
 
                draw_mode++;
242
 
                if( draw_mode >= 2 )
243
 
                        draw_mode = 0;
244
 
        }
245
 
 
246
 
        // draw the segment
247
 
        switch( draw_mode ) {
248
 
        case 0: drawNextSegment_test( reset ); break;
249
 
        case 1: drawNextSegment_time( reset ); break;
250
 
        }
 
220
                switch( _major_mode ) {
 
221
                case MAIN_MODE_IDX:
 
222
                        switch( _minor_mode ) {
 
223
                        case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
 
224
                        case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
 
225
                        }
 
226
                        break;
 
227
                case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
 
228
                }
 
229
 
 
230
                // tell the text services we're starting a new frame
 
231
                Text::draw_reset();
 
232
        }
 
233
 
 
234
        // draw
 
235
        switch( _major_mode ) {
 
236
        case MAIN_MODE_IDX:
 
237
                switch( _minor_mode ) {
 
238
                case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
 
239
                case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
 
240
                case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
 
241
                }
 
242
                break;
 
243
        case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
 
244
        }
 
245
 
 
246
        // draw any text that was rendered
 
247
        TextRenderer::output_buffer();
 
248
 
 
249
#if CLOCK_FORWARD
 
250
        if( ++segment >= NUM_SEGMENTS ) segment = 0;
 
251
#else
 
252
        if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
 
253
#endif
251
254
}
252
255
 
253
256
 
254
257
// calculate time constants when a new pulse has occurred
255
 
void calculateSegmentTimes()
 
258
void calculate_segment_times()
256
259
{
257
260
        // check for overflows, and only recalculate times if there isn't
258
261
        // one (if there is, we'll just go with the last pulse's times)
259
 
        if( new_pulse_at > last_pulse_at )
 
262
        if( _new_pulse_at > _last_pulse_at )
260
263
        {
261
264
                // new segment stepping times
262
 
                unsigned long delta = new_pulse_at - last_pulse_at;
263
 
                segment_step = delta / NUM_SEGMENTS;
264
 
                segment_step_sub = 0;
265
 
                segment_step_sub_step = delta % NUM_SEGMENTS;
 
265
                unsigned long delta = _new_pulse_at - _last_pulse_at;
 
266
                _segment_step = delta / NUM_SEGMENTS;
 
267
                _segment_step_sub = 0;
 
268
                _segment_step_sub_step = delta % NUM_SEGMENTS;
266
269
        }
267
270
 
268
271
        // now we have dealt with this pulse, save the pulse time and
269
272
        // clear new_pulse_at, ready for the next pulse
270
 
        last_pulse_at = new_pulse_at;
271
 
        new_pulse_at = 0;
 
273
        _last_pulse_at = _new_pulse_at;
 
274
        _new_pulse_at = 0;
272
275
}
273
276
 
274
277
 
275
278
// wait until it is time to draw the next segment or a new pulse has
276
279
// occurred
277
 
void waitTillNextSegment( bool reset )
 
280
void wait_till_end_of_segment( bool reset )
278
281
{
279
282
        static unsigned long end_time = 0;
280
283
 
281
284
        // handle reset
282
285
        if( reset )
283
 
                end_time = last_pulse_at;
 
286
                end_time = _last_pulse_at;
284
287
 
285
288
        // work out the time that this segment should be displayed until
286
 
        end_time += segment_step;
287
 
        segment_step_sub += segment_step_sub_step;
288
 
        if( segment_step_sub >= NUM_SEGMENTS ) {
289
 
                segment_step_sub -= NUM_SEGMENTS;
 
289
        end_time += _segment_step;
 
290
        _segment_step_sub += _segment_step_sub_step;
 
291
        if( _segment_step_sub >= NUM_SEGMENTS ) {
 
292
                _segment_step_sub -= NUM_SEGMENTS;
290
293
                end_time++;
291
294
        }
292
295
 
293
296
        // wait
294
 
        while( micros() < end_time && !new_pulse_at );
 
297
        while( micros() < end_time && !_new_pulse_at );
295
298
}
296
299
 
297
300
 
298
301
// ISR to handle the pulses from the fan's tachiometer
299
 
void fanPulseHandler()
 
302
void fan_pulse_handler()
300
303
{
301
304
        // the fan actually sends two pulses per revolution. These pulses
302
305
        // may not be exactly evenly distributed around the rotation, so
307
310
        if( !ignore )
308
311
        {
309
312
                // set a new pulse time
310
 
                new_pulse_at = micros();
 
313
                _new_pulse_at = micros();
311
314
        }
312
315
}
313
316
 
316
319
void setup()
317
320
{
318
321
        // set up an interrupt handler on pin 2 to nitice fan pulses
319
 
        attachInterrupt( 0, fanPulseHandler, RISING );
 
322
        attachInterrupt( 0, fan_pulse_handler, RISING );
320
323
        digitalWrite( 2, HIGH );
321
324
  
322
325
        // set up output pins (4 to 13) for the led array
326
329
        // set up mode-switch button on pin 3
327
330
        pinMode( 3, INPUT );
328
331
        digitalWrite( 3, HIGH );
329
 
 
330
 
        // get the time from the real-time clock
331
 
        int rtc_data[ 7 ];
332
 
        RTC.get( rtc_data, true );
333
 
        time_hours = rtc_data[ DS1307_HR ];
334
 
        time_minutes = rtc_data[ DS1307_MIN ];
335
 
        time_seconds = rtc_data[ DS1307_SEC ];
336
 
 
337
 
        // serial comms
338
 
        Serial.begin( 9600 );
 
332
        static int event_times[] = { 5, 500, 4000, 0 };
 
333
        _button.set_event_times( event_times );
 
334
 
 
335
        // initialise RTC
 
336
        Time::init();
 
337
 
 
338
        // init text renderer
 
339
        TextRenderer::init();
 
340
 
 
341
        // activate the minor mode
 
342
        activate_major_mode();
339
343
}
340
344
 
341
345
 
343
347
void loop()
344
348
{
345
349
        // if there has been a new pulse, we'll be resetting the display
346
 
        bool reset = new_pulse_at? true : false;
 
350
        bool reset = _new_pulse_at? true : false;
 
351
 
 
352
        // update button
 
353
        _button.update();
347
354
 
348
355
        // only do this stuff at the start of a display cycle, to ensure
349
356
        // that no state changes mid-display
350
357
        if( reset )
351
358
        {
352
 
                // check buttons
353
 
                checkButtons();
 
359
                // calculate segment times
 
360
                calculate_segment_times();
354
361
 
355
362
                // keep track of time
356
 
                trackTime();
 
363
                Time::update();
 
364
 
 
365
                // perform button events
 
366
                do_button_events();
357
367
        }
358
368
 
359
369
        // draw this segment
360
 
        drawNextSegment( reset );
361
 
 
362
 
        // do we need to recalculate segment times?
363
 
        if( reset )
364
 
                calculateSegmentTimes();
 
370
        draw_next_segment( reset );
365
371
 
366
372
        // wait till it's time to draw the next segment
367
 
        waitTillNextSegment( reset );
 
373
        wait_till_end_of_segment( reset );
368
374
}