29
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachiometer) pin connected to pin 2 on the
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the arduino should directly drive an LED (the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
35
LED on pin 4 is in the centre of the clock face and the LED on pin
36
36
13 is at the outside.
38
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on anf off in unison in the centre of the clock.
40
LEDs that turn on and off in unison in the centre of the clock.
42
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analog pins 4 and 5.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
46
Implementation details:
50
50
* the timing of the drawing of the clock face is recalculated with
51
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachiometer pulses per revolution, so the
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
54
software skips every other one. This means that the clock may
55
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to dicsover the position that
56
position. You will need to experiment to discover the position that
57
57
the propeller must be in when starting the clock.
59
59
Usage instructions:
76
76
******************************************************************************/
78
79
#include "button.h"
81
#include "mode_switcher.h"
82
#include "modes/analogue_clock.h"
83
#include "modes/digital_clock.h"
84
#include "modes/test_pattern.h"
85
#include "modes/settings_mode.h"
86
#include "modes/info_mode.h"
88
#include "text_renderer.h"
84
91
//_____________________________________________________________________________
88
94
// when non-zero, the time (in microseconds) of a new fan pulse that
89
95
// has just occurred, which means that segment drawing needs to be
91
static unsigned long new_pulse_at = 0;
97
static unsigned long _new_pulse_at = 0;
93
99
// the time (in microseconds) when the last fan pulse occurred
94
static unsigned long last_pulse_at = 0;
100
static unsigned long _last_pulse_at = 0;
96
102
// duration (in microseconds) that a segment should be displayed
97
static unsigned long segment_step = 0;
103
static unsigned long _segment_step = 0;
99
105
// remainder after divisor and a tally of the remainders for each segment
100
static unsigned long segment_step_sub_step = 0;
101
static unsigned long segment_step_sub = 0;
106
static unsigned long _segment_step_sub_step = 0;
107
static unsigned long _segment_step_sub = 0;
104
static Button button( 3 );
107
static int major_mode = 0;
110
static std::vector< MajorMode * > major_modes;
110
static Button _button( 3 );
113
static int _major_mode = 0;
114
static int _minor_mode = 0;
116
#define MAIN_MODE_IDX 1
117
#define SETTINGS_MODE_IDX 0
119
#define ANALOGUE_CLOCK_IDX 0
120
#define DIGITAL_CLOCK_IDX 1
121
#define TEST_PATTERN_IDX 2
122
#define INFO_MODE_IDX 3
112
124
//_____________________________________________________________________________
116
// check for button presses
120
int event = button.update();
125
major_modes[ major_mode ]->short_press();
128
major_modes[ major_mode ]->long_press();
131
if( ++major_mode >= major_modes.size() )
133
major_modes[ major_mode ]->activate();
128
// activate the current minor mode
129
void activate_minor_mode()
135
// give the mode a chance to init
136
switch( _minor_mode ) {
137
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
138
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
139
case INFO_MODE_IDX: info_mode_activate(); break;
144
// activate major mode
145
void activate_major_mode()
152
_button.set_press_mode( _major_mode != SETTINGS_MODE_IDX );
154
// give the mode a chance to init
155
switch( _major_mode ) {
156
case MAIN_MODE_IDX: activate_minor_mode(); break;
157
case SETTINGS_MODE_IDX: settings_mode_activate(); break;
162
// perform button events
163
void do_button_events()
165
// loop through pending events
166
while( int event = _button.get_event() )
172
switch( _major_mode ) {
174
switch( _minor_mode ) {
175
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
176
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
177
case INFO_MODE_IDX: info_mode_press(); break;
180
case SETTINGS_MODE_IDX: settings_mode_press(); break;
186
switch( _major_mode ) {
188
if( ++_minor_mode >= 3 )
190
activate_minor_mode();
192
case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
197
// looooong press (change major mode)
198
if( ++_major_mode > 1 )
200
activate_major_mode();
139
207
// draw a display segment
140
void drawNextSegment( bool reset )
208
void draw_next_segment( bool reset )
142
210
// keep track of segment
143
211
#if CLOCK_FORWARD
148
216
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
219
// reset the text renderer
220
TextRenderer::reset_buffer();
224
switch( _major_mode ) {
226
switch( _minor_mode ) {
227
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
228
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
229
case INFO_MODE_IDX: info_mode_draw_reset(); break;
232
case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
235
// tell the text services we're starting a new frame
152
Drawer &drawer = major_modes[ major_mode ]->get_drawer();
153
if( reset ) drawer.draw_reset();
154
drawer.draw( segment );
240
switch( _major_mode ) {
242
switch( _minor_mode ) {
243
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
244
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
245
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
246
case INFO_MODE_IDX: info_mode_draw( segment ); break;
249
case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
252
// draw any text that was rendered
253
TextRenderer::output_buffer();
156
255
#if CLOCK_FORWARD
157
256
if( ++segment >= NUM_SEGMENTS ) segment = 0;
164
263
// calculate time constants when a new pulse has occurred
165
void calculateSegmentTimes()
264
void calculate_segment_times()
167
266
// check for overflows, and only recalculate times if there isn't
168
267
// one (if there is, we'll just go with the last pulse's times)
169
if( new_pulse_at > last_pulse_at )
268
if( _new_pulse_at > _last_pulse_at )
171
270
// new segment stepping times
172
unsigned long delta = new_pulse_at - last_pulse_at;
173
segment_step = delta / NUM_SEGMENTS;
174
segment_step_sub = 0;
175
segment_step_sub_step = delta % NUM_SEGMENTS;
271
unsigned long delta = _new_pulse_at - _last_pulse_at;
272
_segment_step = delta / NUM_SEGMENTS;
273
_segment_step_sub = 0;
274
_segment_step_sub_step = delta % NUM_SEGMENTS;
178
277
// now we have dealt with this pulse, save the pulse time and
179
278
// clear new_pulse_at, ready for the next pulse
180
last_pulse_at = new_pulse_at;
279
_last_pulse_at = _new_pulse_at;
185
284
// wait until it is time to draw the next segment or a new pulse has
187
void waitTillNextSegment( bool reset )
286
void wait_till_end_of_segment( bool reset )
189
288
static unsigned long end_time = 0;
193
end_time = last_pulse_at;
292
end_time = _last_pulse_at;
195
294
// work out the time that this segment should be displayed until
196
end_time += segment_step;
197
segment_step_sub += segment_step_sub_step;
198
if( segment_step_sub >= NUM_SEGMENTS ) {
199
segment_step_sub -= NUM_SEGMENTS;
295
end_time += _segment_step;
296
_segment_step_sub += _segment_step_sub_step;
297
if( _segment_step_sub >= NUM_SEGMENTS ) {
298
_segment_step_sub -= NUM_SEGMENTS;
204
while( micros() < end_time && !new_pulse_at );
303
while( micros() < end_time && !_new_pulse_at );
208
// ISR to handle the pulses from the fan's tachiometer
209
void fanPulseHandler()
307
// ISR to handle the pulses from the fan's tachometer
308
void fan_pulse_handler()
211
310
// the fan actually sends two pulses per revolution. These pulses
212
311
// may not be exactly evenly distributed around the rotation, so
236
335
// set up mode-switch button on pin 3
237
336
pinMode( 3, INPUT );
238
337
digitalWrite( 3, HIGH );
239
button.add_event_at( 5, 1 );
240
button.add_event_at( 1000, 2 );
241
button.add_event_at( 4000, 3 );
244
Serial.begin( 9600 );
246
// set up major modes
247
static ModeSwitcher mode_switcher;
248
major_modes.push_back( &mode_switcher );
249
major_modes[ 0 ]->activate();
338
static int event_times[] = { 5, 500, 4000, 0 };
339
_button.set_event_times( event_times );
344
// init text renderer
345
TextRenderer::init();
347
// activate the minor mode
348
activate_major_mode();
256
355
// if there has been a new pulse, we'll be resetting the display
257
bool reset = new_pulse_at? true : false;
356
bool reset = _new_pulse_at? true : false;
259
361
// only do this stuff at the start of a display cycle, to ensure
260
362
// that no state changes mid-display
365
// calculate segment times
366
calculate_segment_times();
266
368
// keep track of time
267
Time &time = Time::get_instance();
371
// perform button events
271
375
// draw this segment
272
drawNextSegment( reset );
274
// do we need to recalculate segment times?
276
calculateSegmentTimes();
376
draw_next_segment( reset );
278
378
// wait till it's time to draw the next segment
279
waitTillNextSegment( reset );
379
wait_till_end_of_segment( reset );