21
22
* along with this program. If not, see <http://www.gnu.org/licenses/>.
25
/******************************************************************************
29
* a PC fan is wired up to a 12V power supply
31
* the fan's SENSE (tachometer) pin connected to pin 2 on the
34
* the pins 4 to 13 on the Arduino should directly drive an LED (the
35
LED on pin 4 is in the centre of the clock face and the LED on pin
38
* if a longer hand (and a larger clock face) is desired, pin 4 can be
39
used to indirectly drive a transistor which in turn drives several
40
LEDs that turn on and off in unison in the centre of the clock.
42
* a button should be attached to pin 3 that grounds it when pressed.
44
* A DS1307 remote clock is connected via I2C on analogue pins 4 and 5.
46
Implementation details:
48
* for a schematic, see ../project/propeller-clock.sch.
50
* the timing of the drawing of the clock face is recalculated with
51
every rotation of the propeller.
53
* a PC fan actually sends 2 tachometer pulses per revolution, so the
54
software skips every other one. This means that the clock may
55
appear upside-down if started with the propeller in the wrong
56
position. You will need to experiment to discover the position that
57
the propeller must be in when starting the clock.
61
* pressing the button cycles between variations of the current
64
* pressing and holding the button for a second cycles between display
65
modes (e.g., analogue and digital).
67
* pressing and holding the button for 5 seconds enters "time set"
68
mode. In this mode, the following applies:
69
- the field that is being set flashes
70
- pressing the button increments the field currently being set
71
- pressing and holding the button for a second cycles through the
72
fields that can be set
73
- pressing and holding the button for 5 seconds sets the time and
76
******************************************************************************/
82
#include "modes/analogue_clock.h"
83
#include "modes/digital_clock.h"
84
#include "modes/test_pattern.h"
85
#include "modes/settings_mode.h"
86
#include "modes/info_mode.h"
88
#include "text_renderer.h"
24
91
//_____________________________________________________________________________
28
94
// when non-zero, the time (in microseconds) of a new fan pulse that
29
95
// has just occurred, which means that segment drawing needs to be
31
static unsigned long new_pulse_at = 0;
97
static unsigned long _new_pulse_at = 0;
33
99
// the time (in microseconds) when the last fan pulse occurred
34
static unsigned long last_pulse_at = 0;
100
static unsigned long _last_pulse_at = 0;
36
102
// duration (in microseconds) that a segment should be displayed
37
static unsigned long segment_step = 0;
103
static unsigned long _segment_step = 0;
39
105
// remainder after divisor and a tally of the remainders for each segment
40
static unsigned long segment_step_sub_step = 0;
41
static unsigned long segment_step_sub = 0;
43
// number of segments in a full display (rotation) is 60 (one per
44
// second) times the desired number of sub-divisions of a second
45
#define NUM_SEGMENTS ( 60 * 5 )
106
static unsigned long _segment_step_sub_step = 0;
107
static unsigned long _segment_step_sub = 0;
110
static Button _button( 3 );
113
static int _major_mode = 0;
114
static int _minor_mode = 0;
116
#define SETTINGS_MODE_IDX 1
117
#define MAIN_MODE_IDX 0
119
#define ANALOGUE_CLOCK_IDX 0
120
#define DIGITAL_CLOCK_IDX 1
121
#define INFO_MODE_IDX 2
122
#define TEST_PATTERN_IDX 3
48
124
//_____________________________________________________________________________
52
// ISR to handle the pulses from the fan's tachiometer
53
void fanPulseHandler()
55
// the fan actually sends two pulses per revolution. These pulses
56
// may not be exactly evenly distributed around the rotation, so
57
// we can't recalculate times on every pulse. Instead, we ignore
58
// every other pulse so timings are based on a complete rotation.
59
static bool ignore = true;
128
// activate the current minor mode
129
void activate_minor_mode()
135
// give the mode a chance to init
136
switch( _minor_mode ) {
137
case ANALOGUE_CLOCK_IDX: analogue_clock_activate(); break;
138
case DIGITAL_CLOCK_IDX: digital_clock_activate(); break;
139
case INFO_MODE_IDX: info_mode_activate(); break;
144
// activate major mode
145
void activate_major_mode()
152
_button.set_press_mode( _major_mode != SETTINGS_MODE_IDX );
154
// give the mode a chance to init
155
switch( _major_mode ) {
156
case MAIN_MODE_IDX: activate_minor_mode(); break;
157
case SETTINGS_MODE_IDX: settings_mode_activate(); break;
162
// perform button events
163
void do_button_events()
165
// loop through pending events
166
while( int event = _button.get_event() )
63
// set a new pulse time
64
new_pulse_at = micros();
172
switch( _major_mode ) {
174
switch( _minor_mode ) {
175
case ANALOGUE_CLOCK_IDX: analogue_clock_press(); break;
176
case DIGITAL_CLOCK_IDX: digital_clock_press(); break;
177
case INFO_MODE_IDX: info_mode_press(); break;
180
case SETTINGS_MODE_IDX: settings_mode_press(); break;
186
switch( _major_mode ) {
188
if( ++_minor_mode >= 4 )
190
activate_minor_mode();
192
case SETTINGS_MODE_IDX: settings_mode_long_press(); break;
197
// looooong press (change major mode)
198
if( ++_major_mode > 1 )
200
activate_major_mode();
69
// draw a particular segment
70
void drawNextSegment( bool reset )
207
// draw a display segment
208
void draw_next_segment( bool reset )
72
static unsigned int segment = 0;
73
if( reset ) segment = 0;
76
for( int a = 0; a < 10; a++ )
77
digitalWrite( a + 4, ( ( segment >> a ) & 1 )? HIGH : LOW );
210
// keep track of segment
212
static int segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
213
if( reset ) segment = ( NUM_SEGMENTS - CLOCK_SHIFT ) % NUM_SEGMENTS;
215
static int segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
216
if( reset ) segment = NUM_SEGMENTS - 1 - CLOCK_SHIFT;
219
// reset the text renderer
220
TextRenderer::reset_buffer();
224
switch( _major_mode ) {
226
switch( _minor_mode ) {
227
case ANALOGUE_CLOCK_IDX: analogue_clock_draw_reset(); break;
228
case DIGITAL_CLOCK_IDX: digital_clock_draw_reset(); break;
229
case INFO_MODE_IDX: info_mode_draw_reset(); break;
232
case SETTINGS_MODE_IDX: settings_mode_draw_reset(); break;
235
// tell the text services we're starting a new frame
240
switch( _major_mode ) {
242
switch( _minor_mode ) {
243
case ANALOGUE_CLOCK_IDX: analogue_clock_draw( segment ); break;
244
case DIGITAL_CLOCK_IDX: digital_clock_draw( segment ); break;
245
case TEST_PATTERN_IDX: test_pattern_draw( segment ); break;
246
case INFO_MODE_IDX: info_mode_draw( segment ); break;
249
case SETTINGS_MODE_IDX: settings_mode_draw( segment ); break;
253
// draw any text that was rendered
254
TextRenderer::output_buffer();
257
if( ++segment >= NUM_SEGMENTS ) segment = 0;
259
if( --segment < 0 ) segment = NUM_SEGMENTS - 1;
81
264
// calculate time constants when a new pulse has occurred
82
void calculateSegmentTimes()
265
void calculate_segment_times()
84
267
// check for overflows, and only recalculate times if there isn't
85
268
// one (if there is, we'll just go with the last pulse's times)
86
if( new_pulse_at > last_pulse_at )
269
if( _new_pulse_at > _last_pulse_at )
88
271
// new segment stepping times
89
unsigned long delta = new_pulse_at - last_pulse_at;
90
segment_step = delta / NUM_SEGMENTS;
92
segment_step_sub_step = delta % NUM_SEGMENTS;
272
unsigned long delta = _new_pulse_at - _last_pulse_at;
273
_segment_step = delta / NUM_SEGMENTS;
274
_segment_step_sub = 0;
275
_segment_step_sub_step = delta % NUM_SEGMENTS;
95
278
// now we have dealt with this pulse, save the pulse time and
96
279
// clear new_pulse_at, ready for the next pulse
97
last_pulse_at = new_pulse_at;
280
_last_pulse_at = _new_pulse_at;
102
285
// wait until it is time to draw the next segment or a new pulse has
104
void waitTillNextSegment( bool reset )
287
void wait_till_end_of_segment( bool reset )
106
289
static unsigned long end_time = 0;
110
end_time = last_pulse_at;
293
end_time = _last_pulse_at;
112
295
// work out the time that this segment should be displayed until
113
end_time += segment_step;
114
semgment_step_sub += semgment_step_sub_step;
115
if( semgment_step_sub >= NUM_SEGMENTS ) {
116
semgment_step_sub -= NUM_SEGMENTS;
296
end_time += _segment_step;
297
_segment_step_sub += _segment_step_sub_step;
298
if( _segment_step_sub >= NUM_SEGMENTS ) {
299
_segment_step_sub -= NUM_SEGMENTS;
121
while( micros() < end_time && !new_pulse_at );
304
while( micros() < end_time && !_new_pulse_at );
308
// ISR to handle the pulses from the fan's tachometer
309
void fan_pulse_handler()
311
// the fan actually sends two pulses per revolution. These pulses
312
// may not be exactly evenly distributed around the rotation, so
313
// we can't recalculate times on every pulse. Instead, we ignore
314
// every other pulse so timings are based on a complete rotation.
315
static bool ignore = true;
319
// set a new pulse time
320
_new_pulse_at = micros();
128
// set up an interrupt handler on pin 2 to nitice fan pulses
129
attachInterrupt( 0, fanPulseHandler, RISING );
328
// set up an interrupt handler on pin 2 to notice fan pulses
329
attachInterrupt( 0, fan_pulse_handler, RISING );
130
330
digitalWrite( 2, HIGH );
132
332
// set up output pins (4 to 13) for the led array
133
333
for( int a = 4; a < 14; a++ )
134
334
pinMode( a, OUTPUT );
137
Serial.begin( 9600 );
336
// set up mode-switch button on pin 3
338
digitalWrite( 3, HIGH );
339
static int event_times[] = { 5, 500, 4000, 0 };
340
_button.set_event_times( event_times );
345
// init text renderer
346
TextRenderer::init();
348
// activate the minor mode
349
activate_major_mode();